From a0c6f5a176ea317c8769b5fb3b8b92715d831c92 Mon Sep 17 00:00:00 2001 From: hyb12345678 <1057832183@qq.com> Date: Sat, 9 Oct 2021 14:34:11 +0800 Subject: [PATCH] Update Readme.md --- Readme.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Readme.md b/Readme.md index 3cf72f3..2d53b2b 100644 --- a/Readme.md +++ b/Readme.md @@ -30,10 +30,11 @@ dice ce 3.是改进了 v2 引入的 ASSPP,在 ASPP 中使用 BN 层,最后一点去掉了 CRF -首先是空洞卷积模块的改进,之前我们说了空洞卷积主要是对特征图做采样,扩大感受野,缩小步幅。在 v3 中我们以串行的方式来设计空洞卷积模块。 + 首先是空洞卷积模块的改进,之前我们说了空洞卷积主要是对特征图做采样,扩大感受野,缩小步幅。在 v3 中我们以串行的方式来设计空洞卷积模块。 级联模块被设计的主要目的是引入 striding(步幅,或者跨步)使得更深的模块捕获长距离的信息。 -在引入步幅之后,经过层层级联处理之后,整个图像的特征都可以汇聚到最后一张小分辨率的这张图上。但是这样也有一个不足之处,就是连续的步幅会造成细节信息的丢失,这对语义分割来说是有害的。从下边这张图我们也可以明显看到,随着步幅的增大 mIOU,也就是说平均交并比会逐渐减小,也就是说其细节信息会减小。 -采用了图像级特征,具体来说,改进的 ASPP 由一个 1×1 卷积,和三个 3×3 卷积并行组成,步长为(6,12,18),输出步长为 16,我们从图中也可以看到,它是一个并行的结构。模型的最后一个特征图采用全局平均池化,将重新生成的图像级别的特征提供给带 256 个滤波器(和 BN)的 1×1 卷积,然后使用双线性插值将特征提升到所需的空间维度。我们仔细看会发现,在这个 v3 版本中 CRF 已经被去掉了,整个模型也就变得更加简单易懂。 + 其次在引入步幅之后,经过层层级联处理之后,整个图像的特征都可以汇聚到最后一张小分辨率的这张图上。但是这样也有一个不足之处,就是连续的步幅会造成细节信息的丢失,这对语义分割来说是有害的。从下边这张图我们也可以明显看到,随着步幅的增大 mIOU,也就是说平均交并比会逐渐减小,也就是说其细节信息会减小。 + + 采用了图像级特征,具体来说,改进的 ASPP 由一个 1×1 卷积,和三个 3×3 卷积并行组成,步长为(6,12,18),输出步长为 16,我们从图中也可以看到,它是一个并行的结构。模型的最后一个特征图采用全局平均池化,将重新生成的图像级别的特征提供给带 256 个滤波器(和 BN)的 1×1 卷积,然后使用双线性插值将特征提升到所需的空间维度。我们仔细看会发现,在这个 v3 版本中 CRF 已经被去掉了,整个模型也就变得更加简单易懂。