|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- import math
-
- from os.path import join as pjoin
- from collections import OrderedDict
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
-
- def np2th(weights, conv=False):
- """Possibly convert HWIO to OIHW."""
- if conv:
- weights = weights.transpose([3, 2, 0, 1])
- return torch.from_numpy(weights)
-
-
- class StdConv2d(nn.Conv2d):
-
- def forward(self, x):
- w = self.weight
- v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
- w = (w - m) / torch.sqrt(v + 1e-5)
- return F.conv2d(x, w, self.bias, self.stride, self.padding,
- self.dilation, self.groups)
-
-
- def conv3x3(cin, cout, stride=1, groups=1, bias=False):
- return StdConv2d(cin, cout, kernel_size=3, stride=stride,
- padding=1, bias=bias, groups=groups)
-
-
- def conv1x1(cin, cout, stride=1, bias=False):
- return StdConv2d(cin, cout, kernel_size=1, stride=stride,
- padding=0, bias=bias)
-
-
- class PreActBottleneck(nn.Module):
- """Pre-activation (v2) bottleneck block.
- """
-
- def __init__(self, cin, cout=None, cmid=None, stride=1):
- super().__init__()
- cout = cout or cin
- cmid = cmid or cout//4
-
- self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
- self.conv1 = conv1x1(cin, cmid, bias=False)
- self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
- self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!!
- self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
- self.conv3 = conv1x1(cmid, cout, bias=False)
- self.relu = nn.ReLU(inplace=True)
-
- if (stride != 1 or cin != cout):
- # Projection also with pre-activation according to paper.
- self.downsample = conv1x1(cin, cout, stride, bias=False)
- self.gn_proj = nn.GroupNorm(cout, cout)
-
- def forward(self, x):
-
- # Residual branch
- residual = x
- if hasattr(self, 'downsample'):
- residual = self.downsample(x)
- residual = self.gn_proj(residual)
-
- # Unit's branch
- y = self.relu(self.gn1(self.conv1(x)))
- y = self.relu(self.gn2(self.conv2(y)))
- y = self.gn3(self.conv3(y))
-
- y = self.relu(residual + y)
- return y
-
- def load_from(self, weights, n_block, n_unit):
- conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
- conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
- conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
-
- gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
- gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
-
- gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
- gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
-
- gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
- gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
-
- self.conv1.weight.copy_(conv1_weight)
- self.conv2.weight.copy_(conv2_weight)
- self.conv3.weight.copy_(conv3_weight)
-
- self.gn1.weight.copy_(gn1_weight.view(-1))
- self.gn1.bias.copy_(gn1_bias.view(-1))
-
- self.gn2.weight.copy_(gn2_weight.view(-1))
- self.gn2.bias.copy_(gn2_bias.view(-1))
-
- self.gn3.weight.copy_(gn3_weight.view(-1))
- self.gn3.bias.copy_(gn3_bias.view(-1))
-
- if hasattr(self, 'downsample'):
- proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
- proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
- proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
-
- self.downsample.weight.copy_(proj_conv_weight)
- self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
- self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
-
- class ResNetV2(nn.Module):
- """Implementation of Pre-activation (v2) ResNet mode."""
-
- def __init__(self, block_units, width_factor):
- super().__init__()
- width = int(64 * width_factor)
- self.width = width
-
- self.root = nn.Sequential(OrderedDict([
- ('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
- ('gn', nn.GroupNorm(32, width, eps=1e-6)),
- ('relu', nn.ReLU(inplace=True)),
- # ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
- ]))
-
- self.body = nn.Sequential(OrderedDict([
- ('block1', nn.Sequential(OrderedDict(
- [('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] +
- [(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)],
- ))),
- ('block2', nn.Sequential(OrderedDict(
- [('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] +
- [(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)],
- ))),
- ('block3', nn.Sequential(OrderedDict(
- [('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] +
- [(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)],
- ))),
- ]))
-
- def forward(self, x):
- features = []
- b, c, in_size, _ = x.size()
- x = self.root(x)
- features.append(x)
- x = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
- for i in range(len(self.body)-1):
- x = self.body[i](x)
- right_size = int(in_size / 4 / (i+1))
- if x.size()[2] != right_size:
- pad = right_size - x.size()[2]
- assert pad < 3 and pad > 0, "x {} should {}".format(x.size(), right_size)
- feat = torch.zeros((b, x.size()[1], right_size, right_size), device=x.device)
- feat[:, :, 0:x.size()[2], 0:x.size()[3]] = x[:]
- else:
- feat = x
- features.append(feat)
- x = self.body[-1](x)
- return x, features[::-1]
|