|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- import os
- import torch
- from torch import nn
- import torch.nn.functional as F
- from collections import OrderedDict
-
-
- class ASPP(nn.Module):
- # have bias and relu, no bn
- def __init__(self, in_channel=512, depth=256):
- super().__init__()
- # global average pooling : init nn.AdaptiveAvgPool2d ;also forward torch.mean(,,keep_dim=True)
- self.mean = nn.AdaptiveAvgPool2d((1, 1))
- self.conv = nn.Sequential(nn.Conv2d(in_channel, depth, 1, 1),
- nn.ReLU(inplace=True))
-
- self.atrous_block1 = nn.Sequential(nn.Conv2d(in_channel, depth, 1, 1),
- nn.ReLU(inplace=True))
- self.atrous_block6 = nn.Sequential(
- nn.Conv2d(in_channel, depth, 3, 1, padding=3, dilation=3),
- nn.ReLU(inplace=True))
- self.atrous_block12 = nn.Sequential(
- nn.Conv2d(in_channel, depth, 3, 1, padding=6, dilation=6),
- nn.ReLU(inplace=True))
- self.atrous_block18 = nn.Sequential(
- nn.Conv2d(in_channel, depth, 3, 1, padding=9, dilation=9),
- nn.ReLU(inplace=True))
-
- self.conv_1x1_output = nn.Sequential(nn.Conv2d(depth * 5, depth, 1, 1),
- nn.ReLU(inplace=True))
-
- def forward(self, x):
- size = x.shape[2:]
-
- image_features = self.mean(x)
- image_features = self.conv(image_features)
- image_features = F.interpolate(image_features,
- size=size,
- mode='bilinear',
- align_corners=True)
-
- atrous_block1 = self.atrous_block1(x)
-
- atrous_block6 = self.atrous_block6(x)
-
- atrous_block12 = self.atrous_block12(x)
-
- atrous_block18 = self.atrous_block18(x)
-
- net = self.conv_1x1_output(
- torch.cat([
- image_features, atrous_block1, atrous_block6, atrous_block12,
- atrous_block18
- ],
- dim=1))
- return net
-
- class ResNet(nn.Module):
-
- def __init__(self, block, layers, num_classes=18, zero_init_residual=False,
- groups=1, width_per_group=64, replace_stride_with_dilation=None,
- norm_layer=None):
- super(ResNet, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError("replace_stride_with_dilation should be None "
- "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
- dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
- dilate=replace_stride_with_dilation[2])
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0)
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0)
-
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
-
- return x
-
-
- def _resnet(arch, block, layers, pretrained, progress, **kwargs):
- model = ResNet(block, layers, **kwargs)
-
- return model
-
- def resnet50(pretrained=False, progress=True, **kwargs):
- return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
- **kwargs)
-
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=dilation, groups=groups, bias=False, dilation=dilation)
-
-
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(BasicBlock, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError('BasicBlock only supports groups=1 and base_width=64')
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
- class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
-
- return out
-
- class Deeplab_v3(nn.Module):
- # in_channel = 3 fine-tune
- def __init__(self, class_number=18):
- super().__init__()
- encoder = resnet50()
- self.start = nn.Sequential(encoder.conv1, encoder.bn1, encoder.relu)
-
- self.maxpool = encoder.maxpool
-
- self.low_feature1 = nn.Sequential(nn.Conv2d(
- 64, 32, 1, 1), nn.BatchNorm2d(32), nn.ReLU(inplace=True))
- self.low_feature3 = nn.Sequential(nn.Conv2d(
- 256, 64, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True))
- self.low_feature4 = nn.Sequential(nn.Conv2d(
- 512, 128, 1, 1), nn.BatchNorm2d(128), nn.ReLU(inplace=True))
-
- self.layer1 = encoder.layer1 #256
- self.layer2 = encoder.layer2 #512
- self.layer3 = encoder.layer3 #1024
- self.layer4 = encoder.layer4 #2048
-
- self.aspp = ASPP(in_channel=2048, depth=256)
-
- self.conv_cat4 = nn.Sequential(nn.Conv2d(256 + 128, 256, 3, 1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True))
-
- self.conv_cat3 = nn.Sequential(nn.Conv2d(256 + 64, 256, 3, 1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True),
- nn.Conv2d(256, 64, 3, 1, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True))
-
- self.conv_cat1 = nn.Sequential(nn.Conv2d(64 + 32, 64, 3, 1, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True),
- nn.Conv2d(64, 18, 3, 1, padding=1))
-
- def forward(self, x):
- size0 = x.shape[2:] # need upsample input size
- x1 = self.start(x) # 64, 128*128
- x2 = self.maxpool(x1) # 64, 64*64
- x3 = self.layer1(x2) # 256, 64*64
- x4 = self.layer2(x3) # 512, 32*32
- x5 = self.layer3(x4) # 1024,16*16
- x = self.layer4(x5) # 2048,8*8
- x = self.aspp(x) # 256, 8*8
-
- low_feature1 = self.low_feature1(x1) # 64, 128*128
- # low_feature2 = self.low_feature2(x2) # 64, 64*64
- low_feature3 = self.low_feature3(x3) # 256, 64*64
- low_feature4 = self.low_feature4(x4) # 512, 32*32 -> 128, 32*32
- # low_feature5 = self.low_feature5(x5) # 1024,16*16
-
- size1 = low_feature1.shape[2:]
- # size2 = low_feature2.shape[2:]
- size3 = low_feature3.shape[2:]
- size4 = low_feature4.shape[2:]
- # size5 = low_feature5.shape[2:]
-
- decoder_feature4 = F.interpolate(x, size=size4, mode='bilinear', align_corners=True)
- x = self.conv_cat4(torch.cat([low_feature4, decoder_feature4], dim=1))
-
- decoder_feature3 = F.interpolate(x, size=size3, mode='bilinear', align_corners=True)
- x = self.conv_cat3(torch.cat([low_feature3, decoder_feature3], dim=1))
-
- decoder_feature1 = F.interpolate(x, size=size1, mode='bilinear', align_corners=True)
- x = self.conv_cat1(torch.cat([low_feature1, decoder_feature1], dim=1))
-
- score = F.interpolate(x,
- size=size0,
- mode='bilinear',
- align_corners=True)
-
- return score
-
- def init_model():
- model_path = os.path.join(os.path.dirname(__file__), 'model.pkl')
- model = Deeplab_v3()
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- model.to(device)
- model_state = torch.load(model_path, map_location=device)
- new_state_dict = OrderedDict()
- for k, v in model_state["model_state_dict"].items():
- if k[:7] == "module.":
- new_state_dict[k[7:]] = v
- else:
- new_state_dict[k] = v
- model.load_state_dict(new_state_dict)
- model.eval()
- return model
|