|
- """
- ######################## multi-dataset train lenet example ########################
- This example is a multi-dataset training tutorial. If it is a single dataset, please refer to the single dataset
- training tutorial train.py. This example cannot be used for a single dataset!
- """
- """
- ######################## Instructions for using the training environment ########################
- 1、(1)The structure of the dataset uploaded for multi-dataset training in this example
- MNISTData.zip
- ├── test
- │ ├── t10k-images-idx3-ubyte
- │ └── t10k-labels-idx1-ubyte
- └── train
- ├── train-images-idx3-ubyte
- └── train-labels-idx1-ubyte
-
- checkpoint_lenet-1_1875.zip
- ├── checkpoint_lenet-1_1875.ckpt
-
- (2)The dataset structure in the training image for multiple datasets in this example
- workroot
- ├── MNISTData
- | ├── test
- | └── train
- └── checkpoint_lenet-1_1875
- ├── checkpoint_lenet-1_1875.ckpt
-
- 2、Multi-dataset training requires predefined functions
- (1)Defines whether the task is a training environment or a debugging environment.
- def WorkEnvironment(environment):
- if environment == 'train':
- workroot = '/home/work/user-job-dir' #The training task uses this parameter to represent the local path of the training image
- elif environment == 'debug':
- workroot = '/home/ma-user/work' #The debug task uses this parameter to represent the local path of the debug image
- print('current work mode:' + environment + ', workroot:' + workroot)
- return workroot
-
- (2)Copy multiple datasets from obs to training image
- def MultiObsToEnv(multi_data_url, workroot):
- multi_data_json = json.loads(multi_data_url) #Parse multi_data_url
- for i in range(len(multi_data_json)):
- path = workroot + "/" + multi_data_json[i]["dataset_name"]
- if not os.path.exists(path):
- os.makedirs(path)
- try:
- mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path)
- print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],
- path))
- except Exception as e:
- print('moxing download {} to {} failed: '.format(
- multi_data_json[i]["dataset_url"], path) + str(e))
- return
-
- ***The input and output of the MultiObsToEnv function in this example:
- Input for multi_data_url:
- [
- {
- "dataset_url": "s3://test-opendata/attachment/e/a/eae3a316-42d6-4a43-a484-1fa573eab388e
- ae3a316-42d6-4a43-a484-1fa573eab388/", #obs path of the dataset
- "dataset_name": "MNIST_Data" #the name of the dataset
- },
- {
- "dataset_url": "s3://test-opendata/attachment/2/c/2c59be66-64ec-41ca-b311-f51a486eabf82c
- 59be66-64ec-41ca-b311-f51a486eabf8/",
- "dataset_name": "checkpoint_lenet-1_1875"
- }
- ]
- Purpose of multi_data_url:
- The purpose of the MultiObsToEnv function is to copy multiple datasets from obs to the training image
- and build the dataset path in the training image.
- For example, the path of the MNIST_Data dataset in this example is /home/work/user-job-dir/MNISTData,
- The path to the checkpoint_lenet-1_1875 dataset is /home/work/user-job-dir/checkpoint_lenet-1_1875
-
- (3)Copy the output model to obs.
- def EnvToObs(train_dir, obs_train_url):
- try:
- mox.file.copy_parallel(train_dir, obs_train_url)
- print("Successfully Upload {} to {}".format(train_dir,
- obs_train_url))
- except Exception as e:
- print('moxing upload {} to {} failed: '.format(train_dir,
- obs_train_url) + str(e))
- return
-
- 3、4 parameters need to be defined
- --data_url is the first dataset you selected on the Qizhi platform
- --multi_data_url is the multi-dataset you selected on the Qizhi platform
-
- --data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset task,
- otherwise an error will be reported.
- There is no need to add these parameters to the running parameters of the Qizhi platform,
- because they are predefined in the background, you only need to define them in your code
-
- 4、How the dataset is used
- Multi-datasets use multi_data_url as input, workroot + dataset name + file or folder name in the dataset as the
- calling path of the dataset in the training image.
- For example, the calling path of the train folder in the MNIST_Data dataset in this example is
- workroot + "/MNIST_Data" +"/train"
-
- For details, please refer to the following sample code.
- """
-
- import os
- import argparse
-
- import moxing as mox
- from config import mnist_cfg as cfg
- from dataset_distributed import create_dataset_parallel
- from dataset import create_dataset
- from lenet import LeNet5
- import json
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.common import set_seed
- from mindspore import load_checkpoint, load_param_into_net
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- import mindspore.ops as ops
-
- # set device_id and init
- device_id = int(os.getenv('ASCEND_DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- context.set_context(device_id=device_id)
- init()
-
- ### Defines whether the task is a training environment or a debugging environment ###
- def WorkEnvironment(environment):
- if environment == 'train':
- workroot = '/home/work/user-job-dir'
- elif environment == 'debug':
- workroot = '/home/ma-user/work'
- print('current work mode:' + environment + ', workroot:' + workroot)
- return workroot
-
- ### Copy multiple datasets from obs to training image ###
- def MultiObsToEnv(multi_data_url, workroot):
- multi_data_json = json.loads(multi_data_url)
- for i in range(len(multi_data_json)):
- path = workroot + "/" + multi_data_json[i]["dataset_name"]
- if not os.path.exists(path):
- os.makedirs(path)
- try:
- mox.file.copy_parallel(multi_data_json[i]["dataset_url"], path)
- print("Successfully Download {} to {}".format(multi_data_json[i]["dataset_url"],
- path))
- except Exception as e:
- print('moxing download {} to {} failed: '.format(
- multi_data_json[i]["dataset_url"], path) + str(e))
- return
- ### Copy the output model to obs ###
- def EnvToObs(train_dir, obs_train_url):
- try:
- mox.file.copy_parallel(train_dir, obs_train_url)
- print("Successfully Upload {} to {}".format(train_dir,
- obs_train_url))
- except Exception as e:
- print('moxing upload {} to {} failed: '.format(train_dir,
- obs_train_url) + str(e))
- return
-
-
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
- ### --data_url,--multi_data_url,--train_url,--device_target,These 4 parameters must be defined first in a multi-dataset,
- ### otherwise an error will be reported.
- ### There is no need to add these parameters to the running parameters of the Qizhi platform,
- ### because they are predefined in the background, you only need to define them in your code.
- parser.add_argument('--data_url',
- help='path to training/inference dataset folder',
- default= WorkEnvironment('train') + '/data/')
-
- parser.add_argument('--multi_data_url',
- help='path to multi dataset',
- default= WorkEnvironment('train'))
-
- parser.add_argument('--train_url',
- help='model folder to save/load',
- default= WorkEnvironment('train') + '/model/')
-
- parser.add_argument(
- '--device_target',
- type=str,
- default="Ascend",
- choices=['Ascend', 'CPU'],
- help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
-
- parser.add_argument('--epoch_size',
- type=int,
- default=5,
- help='Training epochs.')
- set_seed(114514)
- if __name__ == "__main__":
- args = parser.parse_args()
- # After defining the training environment, first execute the WorkEnv function and the GetMultiDataPath function to
- # copy multiple datasets from obs to the training image
- environment = 'train'
- workroot = WorkEnvironment(environment)
- MultiObsToEnv(args.multi_data_url, workroot)
-
- ### Define the output path in the training image
- train_dir = workroot + '/model'
- if not os.path.exists(train_dir):
- os.makedirs(train_dir)
-
- ### Copy the dataset from obs to the training image ###
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True)
- ds_train = create_dataset_parallel(os.path.join(workroot + "/MNISTData", "train"),
- cfg.batch_size)
- if ds_train.get_dataset_size() == 0:
- raise ValueError(
- "Please check dataset size > 0 and batch_size <= dataset size")
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
-
- ### Load the trained model:workroot + "/checkpoint_lenet-1_1875"+"/checkpoint_lenet-1_1875.ckpt"
- load_param_into_net(network, load_checkpoint(os.path.join(workroot + "/checkpoint_lenet-1_1875",
- "checkpoint_lenet-1_1875.ckpt")))
-
- if args.device_target != "Ascend":
- model = Model(network,net_loss,net_opt,metrics={"accuracy": Accuracy()})
- else:
- model = Model(network, net_loss,net_opt,metrics={"accuracy": Accuracy()},amp_level="O2")
-
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- #Note that this method saves the model file on each card. You need to specify the save path on each card.
- # In the example, get_rank() is added to distinguish different paths.
- ckpoint_cb = ModelCheckpoint(prefix="data_parallel",
- directory=train_dir + "/" + str(get_rank()) + "/",
- config=config_ck)
- print("============== Starting Training ==============")
- epoch_size = cfg['epoch_size']
- if (args.epoch_size):
- epoch_size = args.epoch_size
- print('epoch_size is: ', epoch_size)
-
- model.train(epoch_size,
- ds_train,
- callbacks=[time_cb, ckpoint_cb,
- LossMonitor()])
- ###Copy the trained model data from the local running environment back to obs,
- ###and download it in the training task corresponding to the Qizhi platform
- EnvToObs(train_dir, args.train_url)
-
|