|
- """
- ######################## single-dataset train lenet example ########################
- This example is a single-dataset training tutorial. If it is a multi-dataset, please refer to the multi-dataset training
- tutorial train_for_multidataset.py. This example cannot be used for multi-datasets!
-
- ######################## Instructions for using the training environment ########################
- The image of the debugging environment and the image of the training environment are two different images,
- and the working local directories are different. In the training task, you need to pay attention to the following points.
- 1、(1)The structure of the dataset uploaded for single dataset training in this example
- MNISTData.zip
- ├── test
- │ ├── t10k-images-idx3-ubyte
- │ └── t10k-labels-idx1-ubyte
- └── train
- ├── train-images-idx3-ubyte
- └── train-labels-idx1-ubyte
-
- (2)The dataset structure of the single dataset in the training image in this example
- workroot
- ├── data
- | ├── test
- | └── train
-
- 2、Single dataset training requires predefined functions
- (1)Defines whether the task is a training environment or a debugging environment.
- def WorkEnvironment(environment):
- if environment == 'train':
- workroot = '/home/work/user-job-dir' #The training task uses this parameter to represent the local path of the training image
- elif environment == 'debug':
- workroot = '/home/ma-user/work' #The debug task uses this parameter to represent the local path of the debug image
- print('current work mode:' + environment + ', workroot:' + workroot)
- return workroot
-
- (2)Copy single dataset from obs to training image.
- def ObsToEnv(obs_data_url, data_dir):
- try:
- mox.file.copy_parallel(obs_data_url, data_dir)
- print("Successfully Download {} to {}".format(obs_data_url, data_dir))
- except Exception as e:
- print('moxing download {} to {} failed: '.format(obs_data_url, data_dir) + str(e))
- return
-
- (3)Copy the output model to obs.
- def EnvToObs(train_dir, obs_train_url):
- try:
- mox.file.copy_parallel(train_dir, obs_train_url)
- print("Successfully Upload {} to {}".format(train_dir,obs_train_url))
- except Exception as e:
- print('moxing upload {} to {} failed: '.format(train_dir,obs_train_url) + str(e))
- return
-
- 3、3 parameters need to be defined
- --data_url is the dataset you selected on the Qizhi platform
-
- --data_url,--train_url,--device_target,These 3 parameters must be defined first in a single dataset task,
- otherwise an error will be reported.
- There is no need to add these parameters to the running parameters of the Qizhi platform,
- because they are predefined in the background, you only need to define them in your code.
-
- 4、How the dataset is used
- A single dataset uses data_url as the input, and data_dir (ie: workroot + '/data') as the calling method
- of the dataset in the image.
- For details, please refer to the following sample code.
-
- """
-
- import os
- import argparse
- import moxing as mox
- from config import mnist_cfg as cfg
- from dataset import create_dataset
- from lenet import LeNet5
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.common import set_seed
-
- ### Defines whether the task is a training environment or a debugging environment ###
- def WorkEnvironment(environment):
- if environment == 'train':
- workroot = '/home/work/user-job-dir'
- elif environment == 'debug':
- workroot = '/home/work'
- print('current work mode:' + environment + ', workroot:' + workroot)
- return workroot
-
- ### Copy single dataset from obs to training image###
- def ObsToEnv(obs_data_url, data_dir):
- try:
- mox.file.copy_parallel(obs_data_url, data_dir)
- print("Successfully Download {} to {}".format(obs_data_url, data_dir))
- except Exception as e:
- print('moxing download {} to {} failed: '.format(obs_data_url, data_dir) + str(e))
- return
- ### Copy the output model to obs###
- def EnvToObs(train_dir, obs_train_url):
- try:
- mox.file.copy_parallel(train_dir, obs_train_url)
- print("Successfully Upload {} to {}".format(train_dir,obs_train_url))
- except Exception as e:
- print('moxing upload {} to {} failed: '.format(train_dir,obs_train_url) + str(e))
- return
-
- ### --data_url,--train_url,--device_target,These 3 parameters must be defined first in a single dataset,
- ### otherwise an error will be reported.
- ###There is no need to add these parameters to the running parameters of the Qizhi platform,
- ###because they are predefined in the background, you only need to define them in your code.
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
- parser.add_argument('--data_url',
- help='path to training/inference dataset folder',
- default= WorkEnvironment('train') + '/data/')
-
- parser.add_argument('--train_url',
- help='model folder to save/load',
- default= WorkEnvironment('train') + '/model/')
-
- parser.add_argument(
- '--device_target',
- type=str,
- default="Ascend",
- choices=['Ascend', 'CPU'],
- help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
-
- parser.add_argument('--epoch_size',
- type=int,
- default=5,
- help='Training epochs.')
-
- if __name__ == "__main__":
- args, unknown = parser.parse_known_args()
- ### defining the training environment
- environment = 'train'
- workroot = WorkEnvironment(environment)
-
- ###Initialize the data and model directories in the training image###
- data_dir = workroot + '/data'
- train_dir = workroot + '/model'
- if not os.path.exists(data_dir):
- os.makedirs(data_dir)
- if not os.path.exists(train_dir):
- os.makedirs(train_dir)
-
- ### Copy the dataset from obs to the training image ###
- ObsToEnv(args.data_url,data_dir)
-
- ###Specifies the device CPU or Ascend NPU used for training###
- context.set_context(mode=context.GRAPH_MODE,
- device_target=args.device_target)
- ds_train = create_dataset(os.path.join(data_dir, "train"),
- cfg.batch_size)
- if ds_train.get_dataset_size() == 0:
- raise ValueError(
- "Please check dataset size > 0 and batch_size <= dataset size")
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
-
- if args.device_target != "Ascend":
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()})
- else:
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()},
- amp_level="O2")
-
- config_ck = CheckpointConfig(
- save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
- directory=train_dir,
- config=config_ck)
- print("============== Starting Training ==============")
- epoch_size = cfg['epoch_size']
- if (args.epoch_size):
- epoch_size = args.epoch_size
- print('epoch_size is: ', epoch_size)
-
- model.train(epoch_size,
- ds_train,
- callbacks=[time_cb, ckpoint_cb,
- LossMonitor()])
-
- ###Copy the trained model data from the local running environment back to obs,
- ###and download it in the training task corresponding to the Qizhi platform
- EnvToObs(train_dir, args.train_url)
|