|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """LeNet."""
- import mindspore.nn as nn
- from mindspore.common.initializer import Normal
-
-
- class LeNet5(nn.Cell):
- """
- Lenet network
-
- Args:
- num_class (int): Number of classes. Default: 10.
- num_channel (int): Number of channels. Default: 1.
-
- Returns:
- Tensor, output tensor
- Examples:
- >>> LeNet(num_class=10)
-
- """
- def __init__(self, num_class=10, num_channel=1, include_top=True):
- super(LeNet5, self).__init__()
- self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.include_top = include_top
- if self.include_top:
- self.flatten = nn.Flatten()
- self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
- self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
- self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- if not self.include_top:
- return x
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
|