|
-
- """
- Produce the dataset:
- 与单机不同的是,在数据集接口需要传入num_shards和shard_id参数,分别对应卡的数量和逻辑序号,建议通过HCCL接口获取:
- get_rank:获取当前设备在集群中的ID。
- get_group_size:获取集群数量。
-
- """
-
- import mindspore.dataset as ds
- import mindspore.dataset.vision.c_transforms as CV
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore.dataset.vision import Inter
- from mindspore.common import dtype as mstype
- from mindspore.communication.management import init, get_rank, get_group_size
-
-
- def create_dataset_parallel(data_path, batch_size=32, repeat_size=1,
- num_parallel_workers=1, shard_id=0, num_shards=8):
- """
- create dataset for train or test
- """
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- shift = 0.0
- rescale_nml = 1 / 0.3081
- shift_nml = -1 * 0.1307 / 0.3081
- # get shard_id and num_shards.Get the ID of the current device in the cluster And Get the number of clusters.
- shard_id = get_rank()
- num_shards = get_group_size()
- # define dataset
- mnist_ds = ds.MnistDataset(data_path, num_shards=num_shards, shard_id=shard_id)
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
- rescale_op = CV.Rescale(rescale, shift)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- buffer_size = 10000
- mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
- mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
- mnist_ds = mnist_ds.repeat(repeat_size)
-
- return mnist_ds
|