|
- #!/usr/bin/python
- #coding=utf-8
- '''
- If there are Chinese comments in the code,please add at the beginning:
- #!/usr/bin/python
- #coding=utf-8
-
- Due to the adaptability of a100, before using the training environment, please use the recommended image of the
- platform with cuda 11.Then adjust the code and submit the image.
- The image of this example is: dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191
- In the training environment, the uploaded dataset will be automatically placed in the /dataset directory.
- If it is a single dataset:
- if MnistDataset_torch.zip is selected,Then the dataset directory is /dataset/train, /dataset/test;
- If it is a multiple dataset:
- If MnistDataset_torch.zip and checkpoint_epoch1_0.73.zip are selected,
- the dataset directory is /dataset/MnistDataset_torch/train, /dataset/MnistDataset_torch/test
- and /dataset/checkpoint_epoch1_0.73/mnist_epoch1_0.73.pkl
-
- The model download path is under /model by default. Please specify the model output location to /model,
- and the Qizhi platform will provide file downloads under the /model directory.
- '''
-
-
- from model import Model
- import numpy as np
- import torch
- from torchvision.datasets import mnist
- from torch.nn import CrossEntropyLoss
- from torch.optim import SGD
- from torch.utils.data import DataLoader
- from torchvision.transforms import ToTensor
- import argparse
- import datetime
-
- # Training settings
- parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
- #The dataset location is placed under /dataset
- parser.add_argument('--traindata', default="/dataset/train" ,help='path to train dataset')
- parser.add_argument('--testdata', default="/dataset/test" ,help='path to test dataset')
- parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train')
- parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch')
-
- def gettime():
- timestr = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
- return timestr
-
- if __name__ == '__main__':
- args, unknown = parser.parse_known_args()
- #log output
- print(gettime(), 'cuda is available:{}'.format(torch.cuda.is_available()))
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- batch_size = args.batch_size
- train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False)
- test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False)
- train_loader = DataLoader(train_dataset, batch_size=batch_size)
- test_loader = DataLoader(test_dataset, batch_size=batch_size)
- model = Model().to(device)
- sgd = SGD(model.parameters(), lr=1e-1)
- cost = CrossEntropyLoss()
- epoch = args.epoch_size
- print(gettime(), 'epoch_size is:{}'.format(epoch))
- for _epoch in range(epoch):
- print(gettime(), 'the {} epoch_size begin'.format(_epoch + 1))
- model.train()
- for idx, (train_x, train_label) in enumerate(train_loader):
- train_x = train_x.to(device)
- train_label = train_label.to(device)
- label_np = np.zeros((train_label.shape[0], 10))
- sgd.zero_grad()
- predict_y = model(train_x.float())
- loss = cost(predict_y, train_label.long())
- if idx % 10 == 0:
- print(gettime(), 'idx: {}, loss: {}'.format(idx, loss.sum().item()))
- loss.backward()
- sgd.step()
-
- correct = 0
- _sum = 0
- model.eval()
- for idx, (test_x, test_label) in enumerate(test_loader):
- test_x = test_x
- test_label = test_label
- predict_y = model(test_x.to(device).float()).detach()
- predict_ys = np.argmax(predict_y.cpu(), axis=-1)
- label_np = test_label.numpy()
- _ = predict_ys == test_label
- correct += np.sum(_.numpy(), axis=-1)
- _sum += _.shape[0]
- print(gettime(), 'accuracy: {:.2f}'.format(correct / _sum))
- #The model output location is placed under /model
- torch.save(model, '/model/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum))
- print("----------this is the end--------")
- print("abc"
|