|
|
@@ -39,10 +39,14 @@ parser.add_argument('--testdata', default="/dataset/test" ,help='path to test da |
|
|
|
parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train') |
|
|
|
parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') |
|
|
|
|
|
|
|
def gettime(): |
|
|
|
timestr = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') |
|
|
|
return timestr |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
args, unknown = parser.parse_known_args() |
|
|
|
#log output |
|
|
|
print('cuda is available:{}'.format(torch.cuda.is_available())) |
|
|
|
print(gettime(), 'cuda is available:{}'.format(torch.cuda.is_available())) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
batch_size = args.batch_size |
|
|
|
train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) |
|
|
@@ -53,9 +57,9 @@ if __name__ == '__main__': |
|
|
|
sgd = SGD(model.parameters(), lr=1e-1) |
|
|
|
cost = CrossEntropyLoss() |
|
|
|
epoch = args.epoch_size |
|
|
|
print('epoch_size is:{}'.format(epoch)) |
|
|
|
print(gettime(), 'epoch_size is:{}'.format(epoch)) |
|
|
|
for _epoch in range(epoch): |
|
|
|
print('the {} epoch_size begin'.format(_epoch + 1)) |
|
|
|
print(gettime(), 'the {} epoch_size begin'.format(_epoch + 1)) |
|
|
|
model.train() |
|
|
|
for idx, (train_x, train_label) in enumerate(train_loader): |
|
|
|
train_x = train_x.to(device) |
|
|
@@ -66,6 +70,7 @@ if __name__ == '__main__': |
|
|
|
loss = cost(predict_y, train_label.long()) |
|
|
|
#if idx % 10 == 0: |
|
|
|
#print('idx: {}, loss: {}'.format(idx, loss.sum().item())) |
|
|
|
print(gettime()) |
|
|
|
print('idx: {}, loss: {}'.format(idx, loss.sum().item())) |
|
|
|
loss.backward() |
|
|
|
sgd.step() |
|
|
@@ -82,6 +87,6 @@ if __name__ == '__main__': |
|
|
|
_ = predict_ys == test_label |
|
|
|
correct += np.sum(_.numpy(), axis=-1) |
|
|
|
_sum += _.shape[0] |
|
|
|
print('accuracy: {:.2f}'.format(correct / _sum)) |
|
|
|
print(gettime(), 'accuracy: {:.2f}'.format(correct / _sum)) |
|
|
|
#The model output location is placed under /model |
|
|
|
torch.save(model, '/model/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum)) |