diff --git a/gpu/pretrain.py b/gpu/pretrain.py deleted file mode 100755 index 191da3c..0000000 --- a/gpu/pretrain.py +++ /dev/null @@ -1,128 +0,0 @@ -#!/usr/bin/python -#coding=utf-8 -''' -If there are Chinese comments in the code,please add at the beginning: -#!/usr/bin/python -#coding=utf-8 - -1,The dataset structure of the single-dataset in this example - MnistDataset_torch.zip - ├── test - └── train - -2,Due to the adaptability of a100, before using the training environment, please use the recommended image of the -platform with cuda 11.Then adjust the code and submit the image. -The image of this example is: dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191 -In the training environment, the uploaded dataset will be automatically placed in the /dataset directory. -Note: the paths are different when selecting a single dataset and multiple datasets. -(1)If it is a single dataset: if MnistDataset_torch.zip is selected, - the dataset directory is /dataset/train, /dataset/test; - If it is a multiple dataset: if MnistDataset_torch.zip is selected, - the dataset directory is /dataset/MnistDataset_torch/train, /dataset/MnistDataset_torch/test; - -(2)If the pre-training model file is selected, the selected pre-training model will be -automatically placed in the /pretrainmodel directory. -for example: - If the model file is selected, the calling method is: '/pretrainmodel/' + args.pretrainmodelname - -The model download path is under /model by default. Please specify the model output location to /model, -and the Qizhi platform will provide file downloads under the /model directory. -''' - - -from model import Model -import numpy as np -import torch -from torchvision.datasets import mnist -from torch.nn import CrossEntropyLoss -from torch.optim import SGD -from torch.utils.data import DataLoader -from torchvision.transforms import ToTensor -import argparse -import os - -# Training settings -parser = argparse.ArgumentParser(description='PyTorch MNIST Example') -#The dataset location is placed under /dataset -parser.add_argument('--traindata', default="/dataset/train" ,help='path to train dataset') -parser.add_argument('--testdata', default="/dataset/test" ,help='path to test dataset') -parser.add_argument('--epoch_size', type=int, default=10, help='how much epoch to train') -parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') -#获取模型文件名称 -parser.add_argument('--ckpt_url', default="", help='pretrain model path') - -# 参数声明 -WORKERS = 0 # dataloder线程数 -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") -model = Model().to(device) -optimizer = SGD(model.parameters(), lr=1e-1) -cost = CrossEntropyLoss() - -# 模型训练 -def train(model, train_loader, epoch): - model.train() - train_loss = 0 - for i, data in enumerate(train_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - loss = cost(y_hat, y) - loss.backward() - optimizer.step() - train_loss += loss - loss_mean = train_loss / (i+1) - print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item())) - -# 模型测试 -def test(model, test_loader, test_data): - model.eval() - test_loss = 0 - correct = 0 - with torch.no_grad(): - for i, data in enumerate(test_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - test_loss += cost(y_hat, y).item() - pred = y_hat.max(1, keepdim=True)[1] - correct += pred.eq(y.view_as(pred)).sum().item() - test_loss /= (i+1) - print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( - test_loss, correct, len(test_data), 100. * correct / len(test_data))) -def main(): - # 如果有保存的模型,则加载模型,并在其基础上继续训练 - if os.path.exists(args.ckpt_url): - checkpoint = torch.load(args.ckpt_url) - model.load_state_dict(checkpoint['model']) - optimizer.load_state_dict(checkpoint['optimizer']) - start_epoch = checkpoint['epoch'] - print('加载 epoch {} 权重成功!'.format(start_epoch)) - else: - start_epoch = 0 - print('无保存模型,将从头开始训练!') - - for epoch in range(start_epoch+1, epochs): - train(model, train_loader, epoch) - test(model, test_loader, test_dataset) - # 保存模型 - state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} - torch.save(state, '/model/mnist_epoch{}.pkl'.format(epoch)) - -if __name__ == '__main__': - args, unknown = parser.parse_known_args() - #log output - print('cuda is available:{}'.format(torch.cuda.is_available())) - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - batch_size = args.batch_size - epochs = args.epoch_size - train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) - test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) - train_loader = DataLoader(train_dataset, batch_size=batch_size) - test_loader = DataLoader(test_dataset, batch_size=batch_size) - main() - - diff --git a/gpu/pretrain_for_c2net.py b/gpu/pretrain_for_c2net.py deleted file mode 100755 index fba79d3..0000000 --- a/gpu/pretrain_for_c2net.py +++ /dev/null @@ -1,144 +0,0 @@ -#!/usr/bin/python -#coding=utf-8 -''' -If there are Chinese comments in the code,please add at the beginning: -#!/usr/bin/python -#coding=utf-8 - -In the training environment, -(1)the code will be automatically placed in the /tmp/code directory, -(2)the uploaded dataset will be automatically placed in the /tmp/dataset directory -Note: the paths are different when selecting a single dataset and multiple datasets. -(1)If it is a single dataset: if MnistDataset_torch.zip is selected, - the dataset directory is /tmp/dataset/train, /dataset/test; - -The dataset structure of the single dataset in the training image in this example: - tmp - ├──dataset - ├── test - └── train - -If multiple datasets are selected, such as MnistDataset_torch.zip and checkpoint_epoch1_0.73.zip, -the dataset directory is /tmp/dataset/MnistDataset_torch/train, /tmp/dataset/MnistDataset_torch/test -and /tmp/dataset/checkpoint_epoch1_0.73/mnist_epoch1_0.73.pkl -The dataset structure in the training image for multiple datasets in this example: -tmp - ├──dataset - ├── MnistDataset_torch - | ├── test - | └── train - └── checkpoint_epoch1_0.73 - ├── mnist_epoch1_0.73.pkl -(3)the model download path is under /tmp/output by default, please specify the model output location to /tmp/output, -qizhi platform will provide file downloads under the /tmp/output directory. -(4)If the pre-training model file is selected, the selected pre-training model will be -automatically placed in the /tmp/pretrainmodel directory. -for example: - If the model file is selected, the calling method is: '/pretrainmodel/' + args.pretrainmodelname - -In addition, if you want to get the model file after each training, you can call the uploader_for_gpu tool, -which is written as: -import os -os.system("cd /tmp/script_for_grampus/ &&./uploader_for_gpu " + "/tmp/output/") -''' - - -from model import Model -import numpy as np -import torch -from torchvision.datasets import mnist -from torch.nn import CrossEntropyLoss -from torch.optim import SGD -from torch.utils.data import DataLoader -from torchvision.transforms import ToTensor -import argparse -import os - -# Training settings -parser = argparse.ArgumentParser(description='PyTorch MNIST Example') -#The dataset location is placed under /dataset -parser.add_argument('--traindata', default="/tmp/dataset/train" ,help='path to train dataset') -parser.add_argument('--testdata', default="/tmp/dataset/test" ,help='path to test dataset') -parser.add_argument('--epoch_size', type=int, default=10, help='how much epoch to train') -parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') -#获取模型文件名称 -parser.add_argument('--ckpt_url', default="", help='pretrain model path') - -# 参数声明 -WORKERS = 0 # dataloder线程数 -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") -model = Model().to(device) -optimizer = SGD(model.parameters(), lr=1e-1) -cost = CrossEntropyLoss() - -# 模型训练 -def train(model, train_loader, epoch): - model.train() - train_loss = 0 - for i, data in enumerate(train_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - loss = cost(y_hat, y) - loss.backward() - optimizer.step() - train_loss += loss - loss_mean = train_loss / (i+1) - print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item())) - -# 模型测试 -def test(model, test_loader, test_data): - model.eval() - test_loss = 0 - correct = 0 - with torch.no_grad(): - for i, data in enumerate(test_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - test_loss += cost(y_hat, y).item() - pred = y_hat.max(1, keepdim=True)[1] - correct += pred.eq(y.view_as(pred)).sum().item() - test_loss /= (i+1) - print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( - test_loss, correct, len(test_data), 100. * correct / len(test_data))) -def main(): - # 如果有保存的模型,则加载模型,并在其基础上继续训练 - if os.path.exists(args.ckpt_url): - checkpoint = torch.load(args.ckpt_url) - model.load_state_dict(checkpoint['model']) - optimizer.load_state_dict(checkpoint['optimizer']) - start_epoch = checkpoint['epoch'] - print('加载 epoch {} 权重成功!'.format(start_epoch)) - else: - start_epoch = 0 - print('无保存模型,将从头开始训练!') - - for epoch in range(start_epoch+1, epochs): - train(model, train_loader, epoch) - test(model, test_loader, test_dataset) - # 保存模型 - state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} - torch.save(state, '/tmp/output/mnist_epoch{}.pkl'.format(epoch)) - #After calling uploader_for_gpu, after each epoch training, the result file under /tmp/output will be sent back to Qizhi - os.system("cd /tmp/script_for_grampus/ &&./uploader_for_gpu " + "/tmp/output/") - -if __name__ == '__main__': - args, unknown = parser.parse_known_args() - #log output - print('cuda is available:{}'.format(torch.cuda.is_available())) - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - batch_size = args.batch_size - epochs = args.epoch_size - train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) - test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) - train_loader = DataLoader(train_dataset, batch_size=batch_size) - test_loader = DataLoader(test_dataset, batch_size=batch_size) - main() - - - \ No newline at end of file diff --git a/gpu/pretrain_wjtest.py b/gpu/pretrain_wjtest.py deleted file mode 100755 index a791b21..0000000 --- a/gpu/pretrain_wjtest.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/usr/bin/python -#coding=utf-8 -''' -If there are Chinese comments in the code,please add at the beginning: -#!/usr/bin/python -#coding=utf-8 - -1,The dataset structure of the single-dataset in this example - MnistDataset_torch.zip - ├── test - └── train - -2,Due to the adaptability of a100, before using the training environment, please use the recommended image of the -platform with cuda 11.Then adjust the code and submit the image. -The image of this example is: dockerhub.pcl.ac.cn:5000/user-images/openi:cuda111_python37_pytorch191 -In the training environment, the uploaded dataset will be automatically placed in the /dataset directory. -Note: the paths are different when selecting a single dataset and multiple datasets. -(1)If it is a single dataset: if MnistDataset_torch.zip is selected, - the dataset directory is /dataset/train, /dataset/test; - If it is a multiple dataset: if MnistDataset_torch.zip is selected, - the dataset directory is /dataset/MnistDataset_torch/train, /dataset/MnistDataset_torch/test; - -(2)If the pre-training model file is selected, the selected pre-training model will be -automatically placed in the /pretrainmodel directory. -for example: - If the model file is selected, the calling method is: '/pretrainmodel/' + args.pretrainmodelname - -The model download path is under /model by default. Please specify the model output location to /model, -and the Qizhi platform will provide file downloads under the /model directory. -''' - - -from model import Model -import numpy as np -import torch -from torchvision.datasets import mnist -from torch.nn import CrossEntropyLoss -from torch.optim import SGD -from torch.utils.data import DataLoader -from torchvision.transforms import ToTensor -import argparse -import os - -# Training settings -parser = argparse.ArgumentParser(description='PyTorch MNIST Example') -#The dataset location is placed under /dataset -parser.add_argument('--traindata', default="/dataset/train" ,help='path to train dataset') -parser.add_argument('--testdata', default="/dataset/test" ,help='path to test dataset') -parser.add_argument('--epoch_size', type=int, default=10, help='how much epoch to train') -parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') -#获取模型文件名称 -parser.add_argument('--ckpt_url', default="", help='pretrain model path') - -# 参数声明 -WORKERS = 0 # dataloder线程数 -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") -model = Model().to(device) -optimizer = SGD(model.parameters(), lr=1e-1) -cost = CrossEntropyLoss() - -# 模型训练 -def train(model, train_loader, epoch): - model.train() - train_loss = 0 - for i, data in enumerate(train_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - loss = cost(y_hat, y) - loss.backward() - optimizer.step() - train_loss += loss - loss_mean = train_loss / (i+1) - print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item())) - -# 模型测试 -def test(model, test_loader, test_data): - model.eval() - test_loss = 0 - correct = 0 - with torch.no_grad(): - for i, data in enumerate(test_loader, 0): - x, y = data - x = x.to(device) - y = y.to(device) - optimizer.zero_grad() - y_hat = model(x) - test_loss += cost(y_hat, y).item() - pred = y_hat.max(1, keepdim=True)[1] - correct += pred.eq(y.view_as(pred)).sum().item() - test_loss /= (i+1) - print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( - test_loss, correct, len(test_data), 100. * correct / len(test_data))) -def main(): - # 如果有保存的模型,则加载模型,并在其基础上继续训练 - print('------ckpt_url is: ', args.ckpt_url); - if os.path.exists(args.ckpt_url): - checkpoint = torch.load(args.ckpt_url) - model.load_state_dict(checkpoint['model']) - optimizer.load_state_dict(checkpoint['optimizer']) - start_epoch = checkpoint['epoch'] - print('加载 epoch {} 权重成功!'.format(start_epoch)) - else: - start_epoch = 0 - print('无保存模型,将从头开始训练!') - - for epoch in range(start_epoch+1, epochs): - train(model, train_loader, epoch) - test(model, test_loader, test_dataset) - # 保存模型 - state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} - torch.save(state, '/model/mnist_epoch{}.pkl'.format(epoch)) - -if __name__ == '__main__': - args, unknown = parser.parse_known_args() - #log output - print('cuda is available:{}'.format(torch.cuda.is_available())) - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - batch_size = args.batch_size - epochs = args.epoch_size - train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) - test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) - train_loader = DataLoader(train_dataset, batch_size=batch_size) - test_loader = DataLoader(test_dataset, batch_size=batch_size) - main() \ No newline at end of file