|
|
@@ -0,0 +1,147 @@ |
|
|
|
#!/usr/bin/python |
|
|
|
#coding=utf-8 |
|
|
|
''' |
|
|
|
If there are Chinese comments in the code,please add at the beginning: |
|
|
|
#!/usr/bin/python |
|
|
|
#coding=utf-8 |
|
|
|
|
|
|
|
In the training environment, |
|
|
|
the code will be automatically placed in the /tmp/code directory, |
|
|
|
the uploaded dataset will be automatically placed in the /tmp/dataset directory |
|
|
|
|
|
|
|
Note: the paths are different when selecting a single dataset and multiple datasets. |
|
|
|
(1)If it is a single dataset: if MnistDataset_torch.zip is selected, |
|
|
|
the dataset directory is /tmp/dataset/train, /dataset/test; |
|
|
|
|
|
|
|
The dataset structure of the single dataset in the training image in this example: |
|
|
|
tmp |
|
|
|
├──dataset |
|
|
|
├── test |
|
|
|
└── train |
|
|
|
|
|
|
|
If multiple datasets are selected, such as MnistDataset_torch.zip and checkpoint_epoch1_0.73.zip, |
|
|
|
the dataset directory is /tmp/dataset/MnistDataset_torch/train, /tmp/dataset/MnistDataset_torch/test |
|
|
|
and /tmp/dataset/checkpoint_epoch1_0.73/mnist_epoch1_0.73.pkl |
|
|
|
The dataset structure in the training image for multiple datasets in this example: |
|
|
|
tmp |
|
|
|
├──dataset |
|
|
|
├── MnistDataset_torch |
|
|
|
| ├── test |
|
|
|
| └── train |
|
|
|
└── checkpoint_epoch1_0.73 |
|
|
|
├── mnist_epoch1_0.73.pkl |
|
|
|
|
|
|
|
|
|
|
|
the model download path is under /tmp/output by default, please specify the model output location to /tmp/output, |
|
|
|
qizhi platform will provide file downloads under the /tmp/output directory. |
|
|
|
|
|
|
|
In addition, if you want to get the model file after each training, you can call the uploader_for_gpu tool, |
|
|
|
which is written as: |
|
|
|
import os |
|
|
|
os.system("cd /tmp/script_for_grampus/ &&./uploader_for_gpu " + "/tmp/output/") |
|
|
|
''' |
|
|
|
|
|
|
|
import torch |
|
|
|
from model import Model |
|
|
|
import numpy as np |
|
|
|
from torchvision.datasets import mnist |
|
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
from torch.optim import SGD |
|
|
|
from torch.utils.data import DataLoader |
|
|
|
from torchvision.transforms import ToTensor |
|
|
|
import argparse |
|
|
|
import os |
|
|
|
|
|
|
|
import importlib.util |
|
|
|
|
|
|
|
def is_torch_dtu_available(): |
|
|
|
if importlib.util.find_spec("torch_dtu") is None: |
|
|
|
return False |
|
|
|
if importlib.util.find_spec("torch_dtu.core") is None: |
|
|
|
return False |
|
|
|
return importlib.util.find_spec("torch_dtu.core.dtu_model") is not None |
|
|
|
|
|
|
|
# Training settings |
|
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') |
|
|
|
#The dataset location is placed under /dataset |
|
|
|
parser.add_argument('--traindata', default="/tmp/dataset/train" ,help='path to train dataset') |
|
|
|
parser.add_argument('--testdata', default="/tmp/dataset/test" ,help='path to test dataset') |
|
|
|
parser.add_argument('--save_url', default="/tmp/output" ,help='path to train dataset') |
|
|
|
|
|
|
|
parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train') |
|
|
|
parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch') |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
# load DPU envs-xx.sh |
|
|
|
DTU_FLAG = True |
|
|
|
if is_torch_dtu_available(): |
|
|
|
import torch_dtu |
|
|
|
import torch_dtu.distributed as dist |
|
|
|
import torch_dtu.core.dtu_model as dm |
|
|
|
from torch_dtu.nn.parallel import DistributedDataParallel as torchDDP |
|
|
|
print('dtu is available: True') |
|
|
|
device = dm.dtu_device() |
|
|
|
DTU_FLAG = True |
|
|
|
else: |
|
|
|
print('dtu is available: False') |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
DTU_FLAG = False |
|
|
|
|
|
|
|
|
|
|
|
# 参数声明 |
|
|
|
model = Model().to(device) |
|
|
|
optimizer = SGD(model.parameters(), lr=1e-1) |
|
|
|
args, unknown = parser.parse_known_args() |
|
|
|
#log output |
|
|
|
batch_size = args.batch_size |
|
|
|
train_dataset = mnist.MNIST(root=args.traindata, train=True, transform=ToTensor(),download=False) |
|
|
|
test_dataset = mnist.MNIST(root=args.testdata, train=False, transform=ToTensor(),download=False) |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=batch_size) |
|
|
|
test_loader = DataLoader(test_dataset, batch_size=batch_size) |
|
|
|
model = Model().to(device) |
|
|
|
sgd = SGD(model.parameters(), lr=1e-1) |
|
|
|
cost = CrossEntropyLoss() |
|
|
|
epoch = args.epoch_size |
|
|
|
print('epoch_size is:{}'.format(epoch)) |
|
|
|
|
|
|
|
if not os.path.exists(args.save_url): |
|
|
|
os.makedirs(args.save_url, exist_ok=True) |
|
|
|
|
|
|
|
for _epoch in range(epoch): |
|
|
|
print('the {} epoch_size begin'.format(_epoch + 1)) |
|
|
|
model.train() |
|
|
|
for idx, (train_x, train_label) in enumerate(train_loader): |
|
|
|
train_x = train_x.to(device) |
|
|
|
train_label = train_label.to(device) |
|
|
|
label_np = np.zeros((train_label.shape[0], 10)) |
|
|
|
sgd.zero_grad() |
|
|
|
predict_y = model(train_x.float()) |
|
|
|
loss = cost(predict_y, train_label.long()) |
|
|
|
if idx % 10 == 0: |
|
|
|
print('idx: {}, loss: {}'.format(idx, loss.sum().item())) |
|
|
|
loss.backward() |
|
|
|
if DTU_FLAG: |
|
|
|
dm.optimizer_step(sgd, barrier=True) |
|
|
|
else: |
|
|
|
sgd.step() |
|
|
|
|
|
|
|
|
|
|
|
correct = 0 |
|
|
|
_sum = 0 |
|
|
|
model.eval() |
|
|
|
for idx, (test_x, test_label) in enumerate(test_loader): |
|
|
|
test_x = test_x |
|
|
|
test_label = test_label |
|
|
|
predict_y = model(test_x.to(device).float()).detach() |
|
|
|
predict_ys = np.argmax(predict_y.cpu(), axis=-1) |
|
|
|
label_np = test_label.numpy() |
|
|
|
_ = predict_ys == test_label |
|
|
|
correct += np.sum(_.numpy(), axis=-1) |
|
|
|
_sum += _.shape[0] |
|
|
|
print('accuracy: {:.2f}'.format(correct / _sum)) |
|
|
|
#The model output location is placed under /tmp/output |
|
|
|
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch} |
|
|
|
torch.save(state, '/tmp/output/mnist_epoch{}_{:.2f}.pkl'.format(_epoch+1, correct / _sum)) |
|
|
|
print('test:') |
|
|
|
print(os.listdir("/tmp/output")) |