#include "test_utils.h" #include "performance_utils.h" #include "yaml_reporter.h" #include #include #include // ============================================================================ // 实现标记宏 - 参赛者修改实现时请将此宏设为0 // ============================================================================ #ifndef USE_DEFAULT_REF_IMPL #define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现 #endif #if USE_DEFAULT_REF_IMPL #include #include #include #include #include #endif // ============================================================================ // SortPair算法实现接口 // 参赛者需要替换Thrust实现为自己的高性能kernel // ============================================================================ template class SortPairAlgorithm { public: // 主要接口函数 - 参赛者需要实现这个函数 void sort(const KeyType* d_keys_in, KeyType* d_keys_out, const ValueType* d_values_in, ValueType* d_values_out, int num_items, bool descending) { #if !USE_DEFAULT_REF_IMPL // ======================================== // 参赛者自定义实现区域 // ======================================== // TODO: 参赛者在此实现自己的高性能排序算法 // 示例:参赛者可以调用1个或多个自定义kernel // preprocessKernel<<>>(d_keys_in, d_values_in, num_items); // mainSortKernel<<>>(d_keys_out, d_values_out, num_items, descending); // postprocessKernel<<>>(d_keys_out, d_values_out, num_items); #else // ======================================== // 默认基准实现 // ======================================== MACA_CHECK(mcMemcpy(d_keys_out, d_keys_in, num_items * sizeof(KeyType), mcMemcpyDeviceToDevice)); MACA_CHECK(mcMemcpy(d_values_out, d_values_in, num_items * sizeof(ValueType), mcMemcpyDeviceToDevice)); auto key_ptr = thrust::device_pointer_cast(d_keys_out); auto value_ptr = thrust::device_pointer_cast(d_values_out); if (descending) { thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::greater()); } else { thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::less()); } #endif } // 获取当前实现状态 static const char* getImplementationStatus() { #if USE_DEFAULT_REF_IMPL return "DEFAULT_REF_IMPL"; #else return "CUSTOM_IMPL"; #endif } private: // 参赛者可以在这里添加辅助函数和成员变量 // 例如:临时缓冲区、多个kernel函数、流等 }; // ============================================================================ // 测试和性能评估 // ============================================================================ bool testCorrectness() { std::cout << "SortPair 正确性测试..." << std::endl; TestDataGenerator generator; SortPairAlgorithm algorithm; // 测试小规模数据 int size = 10000; auto keys = generator.generateRandomFloats(size); auto values = generator.generateRandomUint32(size); // 分配GPU内存 float *d_keys_in, *d_keys_out; uint32_t *d_values_in, *d_values_out; MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_keys_out, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t))); MACA_CHECK(mcMalloc(&d_values_out, size * sizeof(uint32_t))); MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice)); MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice)); // 测试升序和降序 bool allPassed = true; for (bool descending : {false, true}) { std::cout << " " << (descending ? "降序" : "升序") << " 测试..." << std::endl; // CPU参考结果 auto cpu_keys = keys; auto cpu_values = values; cpuSortPair(cpu_keys, cpu_values, descending); // GPU算法结果 algorithm.sort(d_keys_in, d_keys_out, d_values_in, d_values_out, size, descending); // 获取结果 std::vector gpu_keys(size); std::vector gpu_values(size); MACA_CHECK(mcMemcpy(gpu_keys.data(), d_keys_out, size * sizeof(float), mcMemcpyDeviceToHost)); MACA_CHECK(mcMemcpy(gpu_values.data(), d_values_out, size * sizeof(uint32_t), mcMemcpyDeviceToHost)); // 验证结果 bool keysMatch = compareArrays(cpu_keys, gpu_keys, 1e-5); bool valuesMatch = compareArrays(cpu_values, gpu_values); if (!keysMatch || !valuesMatch) { std::cout << " 失败: 结果不匹配" << std::endl; allPassed = false; } else { std::cout << " 通过" << std::endl; } } // 清理内存 mcFree(d_keys_in); mcFree(d_keys_out); mcFree(d_values_in); mcFree(d_values_out); return allPassed; } void benchmarkPerformance() { PerformanceDisplay::printSortPairHeader(); TestDataGenerator generator; PerformanceMeter meter; SortPairAlgorithm algorithm; const int WARMUP_ITERATIONS = 5; const int BENCHMARK_ITERATIONS = 10; // 用于YAML报告的数据收集 std::vector> perf_data; for (int i = 0; i < NUM_TEST_SIZES; i++) { int size = TEST_SIZES[i]; // 生成测试数据 auto keys = generator.generateRandomFloats(size); auto values = generator.generateRandomUint32(size); // 分配GPU内存 float *d_keys_in, *d_keys_out; uint32_t *d_values_in, *d_values_out; MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_keys_out, size * sizeof(float))); MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t))); MACA_CHECK(mcMalloc(&d_values_out, size * sizeof(uint32_t))); MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice)); MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice)); float asc_time = 0, desc_time = 0; // 测试升序和降序 for (bool descending : {false, true}) { // Warmup阶段 for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) { algorithm.sort(d_keys_in, d_keys_out, d_values_in, d_values_out, size, descending); } // 正式测试阶段 float total_time = 0; for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) { meter.startTiming(); algorithm.sort(d_keys_in, d_keys_out, d_values_in, d_values_out, size, descending); total_time += meter.stopTiming(); } float avg_time = total_time / BENCHMARK_ITERATIONS; if (descending) { desc_time = avg_time; } else { asc_time = avg_time; } } // 计算性能指标 auto asc_metrics = PerformanceCalculator::calculateSortPair(size, asc_time); auto desc_metrics = PerformanceCalculator::calculateSortPair(size, desc_time); // 显示性能数据 PerformanceDisplay::printSortPairData(size, asc_time, desc_time, asc_metrics, desc_metrics); // 收集YAML报告数据 auto entry = YAMLPerformanceReporter::createEntry(); entry["data_size"] = std::to_string(size); entry["asc_time_ms"] = std::to_string(asc_time); entry["desc_time_ms"] = std::to_string(desc_time); entry["asc_throughput_gps"] = std::to_string(asc_metrics.throughput_gps); entry["desc_throughput_gps"] = std::to_string(desc_metrics.throughput_gps); entry["key_type"] = "float"; entry["value_type"] = "uint32_t"; perf_data.push_back(entry); // 清理内存 mcFree(d_keys_in); mcFree(d_keys_out); mcFree(d_values_in); mcFree(d_values_out); } // 生成YAML性能报告 YAMLPerformanceReporter::generateSortPairYAML(perf_data, "sort_pair_performance.yaml"); PerformanceDisplay::printSavedMessage("sort_pair_performance.yaml"); } // ============================================================================ // 主函数 // ============================================================================ int main(int argc, char* argv[]) { std::cout << "=== SortPair 算法测试 ===" << std::endl; // 检查参数 std::string mode = "all"; if (argc > 1) { mode = argv[1]; } bool correctness_passed = true; bool performance_completed = true; try { if (mode == "correctness" || mode == "all") { correctness_passed = testCorrectness(); } if (mode == "performance" || mode == "all") { if (correctness_passed || mode == "performance") { benchmarkPerformance(); } else { std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl; performance_completed = false; } } std::cout << "\n=== 测试完成 ===" << std::endl; std::cout << "实现状态: " << SortPairAlgorithm::getImplementationStatus() << std::endl; if (mode == "all") { std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl; std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl; } return correctness_passed ? 0 : 1; } catch (const std::exception& e) { std::cerr << "测试出错: " << e.what() << std::endl; return 1; } }