| @@ -0,0 +1,36 @@ | |||
| name: 赛题(CP) | |||
| description: 参赛题目 | |||
| title: "[cp]: " | |||
| labels: ["cp"] | |||
| body: | |||
| - type: markdown | |||
| attributes: | |||
| value: | | |||
| 感谢你积极参与比赛,并提交自己希望参加的赛题,当出现一样的题目、一样的性能的时候,以谁创建赛题的时间早者优先。 | |||
| - type: textarea | |||
| id: desired-solution | |||
| attributes: | |||
| label: 你提交的赛题的内容介绍 | |||
| description: 清晰并简洁地描述你希望参赛的内容详细的描述,尽量清晰方便他人了解赛题希望达成的目标。 | |||
| validations: | |||
| required: true | |||
| - type: textarea | |||
| id: alternatives | |||
| attributes: | |||
| label: 赛题有对应的预期结果 | |||
| description: 清晰并简洁地描述赛题完成的预期结果,最佳的方式是知道如何测试验证预期结果的正确性。 | |||
| validations: | |||
| required: false | |||
| - type: textarea | |||
| id: additional-context | |||
| attributes: | |||
| label: 你有其他相关背景的信息吗? | |||
| description: 在此处添加有关想法的任何其他上下文或截图。 | |||
| validations: | |||
| required: false | |||
| - type: checkboxes | |||
| attributes: | |||
| label: 推荐其它选手完成【如选否,请创建后assign赛题给自己】 | |||
| options: | |||
| - label: 是否希望推荐给别人完成该赛题。 | |||
| required: false | |||
| @@ -1,4 +1,4 @@ | |||
| name: 想法(GPUKernelContest) | |||
| name: 想法 | |||
| description: 对本赛题提出一个想法或建议 | |||
| title: "[idea]: " | |||
| labels: ["idea"] | |||
| @@ -1,4 +1,4 @@ | |||
| name: 任务(GPUKernelContest) | |||
| name: 任务 | |||
| description: 对本赛题提出一个任务,用于后续跟踪和执行。 | |||
| title: "[task]: " | |||
| labels: ["task"] | |||
| @@ -0,0 +1,6 @@ | |||
| .DS_Store | |||
| *.bak | |||
| *.pyc | |||
| *.o | |||
| */build/ | |||
| cp_template/*.yaml | |||
| @@ -32,10 +32,70 @@ | |||
| --- | |||
| ## 📥 如何参与提交? | |||
| ## 🚀 快速上手 | |||
| 本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。为了快速让参赛者进入比赛状态,我们提供了三个核心算法的高性能版本参考,供参赛选手不断优化性能: | |||
| - **ReduceSum**: 高精度归约求和 | |||
| - **SortPair**: 键值对稳定排序 | |||
| - **TopkPair**: 键值对TopK选择 | |||
| [三个核心算法赛题模板](./cp_template/) | |||
| ### 📥 选手赛题准备 | |||
| 1. 点击[创建赛题](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/new?template=cp.yml) | |||
| 2. 记录赛题的ID,例如:[ICTN0N](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/ICTN0N) | |||
| 3. Fork仓库并初始化比赛环境(三个核心算法题优化赛题以外自定义的赛题需有入口run.sh脚本,供CI自动测试验证) | |||
| 1. 拷贝赛题样例`cp_template`到赛题`ICTN0N`目录 | |||
| ``` | |||
| ├── S1(说明:第一季比赛名) | |||
| │ ├── ICTN0N(说明:以赛题ID命名目录存放赛题的PR) | |||
| | | ├── utils | |||
| │ | ├── run.sh(说明:作为CI自动测试验证的入口) | |||
| | | └── …… | |||
| │ └── …… | |||
| └── S2(说明:第二季比赛名) | |||
| └── 赛题目录1 | |||
| └── 赛题目录2 | |||
| ``` | |||
| ### 编译和测试 | |||
| 选手赛题目录内提供了编译、测试的脚本,供选手熟悉比赛环境,步骤如下: | |||
| ```bash | |||
| # !!!注意参赛选手需要根据自己的赛题ID进入自己初始化的目录!!!! | |||
| cd GPUKernelContest/S1/ICTN0N | |||
| ``` | |||
| #### 1. 全量编译和运行 | |||
| ```bash | |||
| # 编译并运行所有算法测试(默认行为) | |||
| ./run.sh | |||
| # 编译并运行单个算法测试 | |||
| ./run.sh --run_reduce # ReduceSum算法 | |||
| ./run.sh --run_sort # SortPair算法 | |||
| ./run.sh --run_topk # TopkPair算法 | |||
| ``` | |||
| #### 2. 手动运行测试 | |||
| ```bash | |||
| # 仅编译所有算法,不运行测试 | |||
| ./run.sh --build-only | |||
| # 单个运行不同算法的测试 | |||
| ./build/test_reducesum [correctness|performance|all] | |||
| ./build/test_sortpair [correctness|performance|all] | |||
| ./build/test_topkpair [correctness|performance|all] | |||
| ``` | |||
| 对于如何提交可参考:[如何贡献](how-to-contribute.md) | |||
| ### ✅ 参赛要求: | |||
| - 提交内容必须可以在沐曦自研 GPU **曦云 C500** 上运行。 | |||
| - 提交内容必须可以在MACA软件上运行。 | |||
| - 所提交的优化代码将由主办方审核,**需成功合并(Merge)到官方 Gitee 仓库,才算有效提交。** | |||
| ### 📦 提交内容包含: | |||
| @@ -47,7 +107,7 @@ | |||
| ## 📈 评分机制 | |||
| 每次提交会按以下规则评分: | |||
| 每次合并的提交会按以下规则评分: | |||
| ### 🎯 基础得分(Level): | |||
| | 等级 | 内容描述 | 分值 | | |||
| @@ -56,7 +116,7 @@ | |||
| | Level 2 | 融合优化 2~9 个算子 | 10 分 | | |||
| | Level 3 | 含 MMA(多维矩阵乘)融合算子 | 50 分 | | |||
| | Level 4 | 用于大模型推理的复杂融合算子 | 50 分 | | |||
| | 合并至metax-maca开源项目仓库的每个PR | - | 50 分 | | |||
| | 合并至MACA开源项目仓库的每个PR<需要在赛题提供对应合并的记录,并确保和参赛使用的邮箱一致的提交邮箱> | - | 50 分 | | |||
| ### ✨ 加分项: | |||
| | 内容 | 分值 | | |||
| @@ -70,18 +130,19 @@ | |||
| --- | |||
| ## 🏅 排名规则 | |||
| - 比赛周期:2 个月 | |||
| - 排名按累计得分排序,取前 12 名! | |||
| ## 🏆 排名机制 | |||
| 若得分相同: | |||
| 1. 提交次数多者优先 | |||
| 2. 提交时间早者优先 | |||
| 1. 评委评分从高到低排序 | |||
| 2. **评估规则:** 取前 12 名作为最终获奖选手 | |||
| 3. 若基础得分相同: | |||
| - 加分项多者优先 | |||
| - 提交数量多者优先 | |||
| - 提交时间早者优先 | |||
| 4. 当同一参赛选手在本赛题有多个赛题的提交时,多个赛题计算累计得分 | |||
| --- | |||
| ## 📚 官方参考项目仓库 | |||
| ## 📚 参考MACA开源项目仓库 | |||
| 你可以参考以下项目仓库,了解算子开发与提交格式: | |||
| @@ -92,12 +153,6 @@ | |||
| --- | |||
| ## 🖥️ 可用资源 | |||
| - 曦云 **C500 GPU 1/2卡**,主办方通过算力券的形式发放给报名的同学。 | |||
| --- | |||
| ## 💡 术语解释 | |||
| - **算子(Operator)**:指深度学习框架中的基本计算模块,例如矩阵乘法、卷积等。 | |||
| @@ -0,0 +1,26 @@ | |||
| # ReduceSum算法性能测试结果 | |||
| # 生成时间: 2025-09-04 18:32:03 | |||
| algorithm: "ReduceSum" | |||
| data_types: | |||
| input: "float" | |||
| output: "float" | |||
| formulas: | |||
| throughput: "elements / time(s) / 1e9 (G/s)" | |||
| performance_data: | |||
| - data_size: 1000000 | |||
| time_ms: 0.051046 | |||
| throughput_gps: 19.590022 | |||
| data_type: "float" | |||
| - data_size: 134217728 | |||
| time_ms: 0.405018 | |||
| throughput_gps: 331.387385 | |||
| data_type: "float" | |||
| - data_size: 536870912 | |||
| time_ms: 1.351834 | |||
| throughput_gps: 397.142754 | |||
| data_type: "float" | |||
| - data_size: 1073741824 | |||
| time_ms: 2.618675 | |||
| throughput_gps: 410.032451 | |||
| data_type: "float" | |||
| @@ -0,0 +1,46 @@ | |||
| # SortPair算法性能测试结果 | |||
| # 生成时间: 2025-09-03 22:37:18 | |||
| algorithm: "SortPair" | |||
| data_types: | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| formulas: | |||
| throughput: "elements / time(s) / 1e9 (G/s)" | |||
| performance_data: | |||
| - data_size: 1000000 | |||
| ascending: | |||
| time_ms: 0.351488 | |||
| throughput_gps: 2.845047 | |||
| descending: | |||
| time_ms: 0.343270 | |||
| throughput_gps: 2.913155 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| ascending: | |||
| time_ms: 22.273815 | |||
| throughput_gps: 6.025808 | |||
| descending: | |||
| time_ms: 22.494003 | |||
| throughput_gps: 5.966823 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| ascending: | |||
| time_ms: 88.856277 | |||
| throughput_gps: 6.042014 | |||
| descending: | |||
| time_ms: 89.913918 | |||
| throughput_gps: 5.970943 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| ascending: | |||
| time_ms: 181.409576 | |||
| throughput_gps: 5.918882 | |||
| descending: | |||
| time_ms: 183.428955 | |||
| throughput_gps: 5.853720 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| @@ -0,0 +1,210 @@ | |||
| # TopkPair算法性能测试结果 | |||
| # 生成时间: 2025-09-03 22:40:54 | |||
| algorithm: "TopkPair" | |||
| data_types: | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| formulas: | |||
| throughput: "elements / time(s) / 1e9 (G/s)" | |||
| performance_data: | |||
| - data_size: 1000000 | |||
| k_value: 32 | |||
| ascending: | |||
| time_ms: 0.402509 | |||
| throughput_gps: 2.484418 | |||
| descending: | |||
| time_ms: 0.416307 | |||
| throughput_gps: 2.402072 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1000000 | |||
| k_value: 50 | |||
| ascending: | |||
| time_ms: 0.404787 | |||
| throughput_gps: 2.470434 | |||
| descending: | |||
| time_ms: 0.414669 | |||
| throughput_gps: 2.411563 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1000000 | |||
| k_value: 100 | |||
| ascending: | |||
| time_ms: 0.398336 | |||
| throughput_gps: 2.510443 | |||
| descending: | |||
| time_ms: 0.408320 | |||
| throughput_gps: 2.449060 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1000000 | |||
| k_value: 256 | |||
| ascending: | |||
| time_ms: 0.410752 | |||
| throughput_gps: 2.434559 | |||
| descending: | |||
| time_ms: 0.403379 | |||
| throughput_gps: 2.479057 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1000000 | |||
| k_value: 1024 | |||
| ascending: | |||
| time_ms: 0.391091 | |||
| throughput_gps: 2.556949 | |||
| descending: | |||
| time_ms: 0.391142 | |||
| throughput_gps: 2.556613 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| k_value: 32 | |||
| ascending: | |||
| time_ms: 22.394062 | |||
| throughput_gps: 5.993452 | |||
| descending: | |||
| time_ms: 22.263729 | |||
| throughput_gps: 6.028538 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| k_value: 50 | |||
| ascending: | |||
| time_ms: 22.379187 | |||
| throughput_gps: 5.997435 | |||
| descending: | |||
| time_ms: 22.228352 | |||
| throughput_gps: 6.038132 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| k_value: 100 | |||
| ascending: | |||
| time_ms: 22.436581 | |||
| throughput_gps: 5.982094 | |||
| descending: | |||
| time_ms: 22.229326 | |||
| throughput_gps: 6.037868 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| k_value: 256 | |||
| ascending: | |||
| time_ms: 22.463232 | |||
| throughput_gps: 5.974996 | |||
| descending: | |||
| time_ms: 22.319946 | |||
| throughput_gps: 6.013354 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 134217728 | |||
| k_value: 1024 | |||
| ascending: | |||
| time_ms: 22.468454 | |||
| throughput_gps: 5.973608 | |||
| descending: | |||
| time_ms: 22.335976 | |||
| throughput_gps: 6.009038 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| k_value: 32 | |||
| ascending: | |||
| time_ms: 89.437294 | |||
| throughput_gps: 6.002763 | |||
| descending: | |||
| time_ms: 88.605972 | |||
| throughput_gps: 6.059083 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| k_value: 50 | |||
| ascending: | |||
| time_ms: 89.460587 | |||
| throughput_gps: 6.001200 | |||
| descending: | |||
| time_ms: 88.546509 | |||
| throughput_gps: 6.063152 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| k_value: 100 | |||
| ascending: | |||
| time_ms: 89.203011 | |||
| throughput_gps: 6.018529 | |||
| descending: | |||
| time_ms: 88.809097 | |||
| throughput_gps: 6.045224 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| k_value: 256 | |||
| ascending: | |||
| time_ms: 89.500465 | |||
| throughput_gps: 5.998526 | |||
| descending: | |||
| time_ms: 88.743912 | |||
| throughput_gps: 6.049665 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 536870912 | |||
| k_value: 1024 | |||
| ascending: | |||
| time_ms: 89.405357 | |||
| throughput_gps: 6.004908 | |||
| descending: | |||
| time_ms: 88.446083 | |||
| throughput_gps: 6.070036 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| k_value: 32 | |||
| ascending: | |||
| time_ms: 182.233307 | |||
| throughput_gps: 5.892127 | |||
| descending: | |||
| time_ms: 181.076950 | |||
| throughput_gps: 5.929754 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| k_value: 50 | |||
| ascending: | |||
| time_ms: 182.273239 | |||
| throughput_gps: 5.890836 | |||
| descending: | |||
| time_ms: 180.944550 | |||
| throughput_gps: 5.934093 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| k_value: 100 | |||
| ascending: | |||
| time_ms: 182.374191 | |||
| throughput_gps: 5.887576 | |||
| descending: | |||
| time_ms: 181.277100 | |||
| throughput_gps: 5.923207 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| k_value: 256 | |||
| ascending: | |||
| time_ms: 182.349457 | |||
| throughput_gps: 5.888374 | |||
| descending: | |||
| time_ms: 181.248199 | |||
| throughput_gps: 5.924152 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| - data_size: 1073741824 | |||
| k_value: 1024 | |||
| ascending: | |||
| time_ms: 182.378326 | |||
| throughput_gps: 5.887442 | |||
| descending: | |||
| time_ms: 181.025803 | |||
| throughput_gps: 5.931430 | |||
| key_type: "float" | |||
| value_type: "uint32_t" | |||
| @@ -1,59 +1,12 @@ | |||
| # GPU 高性能并行计算算法优化竞赛 | |||
| ## 🎯 竞赛概述 | |||
| 本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。参赛者可选择实现三个核心算法的高性能版本: | |||
| - **ReduceSum**: 高精度归约求和 | |||
| - **SortPair**: 键值对稳定排序 | |||
| - **TopkPair**: 键值对TopK选择 | |||
| ## 🚀 快速开始 | |||
| ### 编译和测试 | |||
| #### 1. 全量编译和运行 | |||
| ```bash | |||
| # 编译并运行所有算法测试(默认行为) | |||
| ./build_and_run.sh | |||
| # 仅编译所有算法,不运行测试 | |||
| ./build_and_run.sh --build-only | |||
| # 编译并运行单个算法测试 | |||
| ./build_and_run.sh --run_reduce # ReduceSum算法 | |||
| ./build_and_run.sh --run_sort # SortPair算法 | |||
| ./build_and_run.sh --run_topk # TopkPair算法 | |||
| ``` | |||
| #### 2. 单独编译和运行 | |||
| ```bash | |||
| # 编译并运行ReduceSum算法(默认行为) | |||
| ./build_and_run_reduce_sum.sh | |||
| # 仅编译ReduceSum算法,不运行测试 | |||
| ./build_and_run_reduce_sum.sh --build-only | |||
| # 编译并运行SortPair正确性测试 | |||
| ./build_and_run_sort_pair.sh --run correctness | |||
| # 编译并运行TopkPair性能测试 | |||
| ./build_and_run_topk_pair.sh --run performance | |||
| ``` | |||
| #### 3. 手动运行测试 | |||
| ```bash | |||
| ./build/test_reducesum [correctness|performance|all] | |||
| ./build/test_sortpair [correctness|performance|all] | |||
| ./build/test_topkpair [correctness|performance|all] | |||
| ``` | |||
| ## 📝 参赛指南 | |||
| ### 实现位置 | |||
| 参赛者需要在以下文件中替换Thrust实现: | |||
| - `src/reduce_sum_algorithm.maca` - 替换Thrust归约求和 | |||
| - `src/sort_pair_algorithm.maca` - 替换Thrust稳定排序 | |||
| - `src/topk_pair_algorithm.maca` - 替换Thrust TopK选择 | |||
| - `reduce_sum_algorithm.maca` - 替换Thrust归约求和 | |||
| - `sort_pair_algorithm.maca` - 替换Thrust稳定排序 | |||
| - `topk_pair_algorithm.maca` - 替换Thrust TopK选择 | |||
| ### 算法要求 | |||
| 见competition_parallel_algorithms.md | |||
| @@ -92,25 +45,21 @@ | |||
| - 各数据规模的详细性能数据 | |||
| - 升序/降序分别统计(适用时) | |||
| ## 📁 项目结构 | |||
| ## 📁 提交内容结构 | |||
| ``` | |||
| ├── build_and_run.sh # 统一编译和运行脚本(默认编译+运行所有算法) | |||
| ├── build_common.sh # 公共编译配置和函数 | |||
| ├── build_and_run_reduce_sum.sh # ReduceSum独立编译和运行脚本 | |||
| ├── build_and_run_sort_pair.sh # SortPair独立编译和运行脚本 | |||
| ├── build_and_run_topk_pair.sh # TopkPair独立编译和运行脚本 | |||
| ├── run.sh # 统一编译和运行脚本(默认编译+运行所有算法) | |||
| ├── competition_parallel_algorithms.md # 详细题目说明 | |||
| ├── src/ # 算法实现和工具文件 | |||
| │ ├── reduce_sum_algorithm.maca # 1. ReduceSum测试程序 | |||
| │ ├── sort_pair_algorithm.maca # 2. SortPair测试程序 | |||
| │ ├── topk_pair_algorithm.maca # 3. TopkPair测试程序 | |||
| │── reduce_sum_algorithm.maca # 1. ReduceSum测试程序 | |||
| │── sort_pair_algorithm.maca # 2. SortPair测试程序 | |||
| │── topk_pair_algorithm.maca # 3. TopkPair测试程序 | |||
| ├── utils/ # 工具文件 | |||
| │ ├── test_utils.h # 测试工具和CPU参考实现 | |||
| │ ├── yaml_reporter.h # YAML性能报告生成器 | |||
| │ └── performance_utils.h # 性能测试工具 | |||
| ├── final_results/reduce_sum_results.yaml #ReduceSum性能数据 | |||
| ├── final_results/sort_pair_results.yaml #替换Thrust稳定排序 | |||
| └── final_results/topk_pair_results.yaml #TopkPair性能数据 | |||
| ├── reduce_sum_results.yaml #ReduceSum性能数据 | |||
| ├── sort_pair_results.yaml #替换Thrust稳定排序 | |||
| └── topk_pair_results.yaml #TopkPair性能数据 | |||
| ``` | |||
| ## 🔧 开发工具 | |||
| @@ -134,7 +83,7 @@ mxcc -O3 -std=c++17 --extended-lambda -Isrc | |||
| |--------|--------|------| | |||
| | `COMPILER` | `mxcc` | CUDA编译器路径 | | |||
| | `COMPILER_FLAGS` | `-O3 -std=c++17 --extended-lambda` | 编译标志 | | |||
| | `INCLUDE_DIR` | `src` | 头文件目录 | | |||
| | `HEADER_DIR` | `utils` | 头文件目录 | | |||
| | `BUILD_DIR` | `build` | 构建输出目录 | | |||
| ### 调试模式 | |||
| @@ -1,11 +1,11 @@ | |||
| # 题目: | |||
| # 样例赛题说明 | |||
| ## GPU高性能并行计算算法优化 | |||
| 要求参赛者通过一个或多个global kernel 函数(允许配套 device 辅助函数),实现高性能算法。 | |||
| 在正确性、稳定性前提下,比拼算法性能。 | |||
| # 1. ReduceSum算法优化 | |||
| ```cpp | |||
| template <typename InputT = float, typename OutputT = float> | |||
| @@ -23,14 +23,12 @@ public: | |||
| * 系统将测试评估1M, 128M, 512M, 1G element number下的算法性能 | |||
| * 假定输入d\_in数据量为num\_items | |||
| 注意事项 | |||
| * 累计误差不大于cpu double golden基准的0.5% | |||
| * 注意针对NAN和INF等异常值的处理 | |||
| 加分项 | |||
| * 使用tensor core计算reduce | |||
| @@ -62,14 +60,11 @@ public: | |||
| * 需要校验结果正确性 | |||
| * 结果必须稳定排序 | |||
| 加分项 | |||
| * 支持其他不同数据类型的排序,如half、double、int32_t等 | |||
| * 覆盖更全面的数据范围,提供良好稳定的性能表现 | |||
| # 3. Topk Pair算法优化 | |||
| ```cpp | |||
| template <typename KeyType, typename ValueType> | |||
| @@ -95,7 +90,6 @@ public: | |||
| * 结果必须稳定排序 | |||
| 加分项 | |||
| * 支持其他不同数据类型的键值对,实现类型通用算法 | |||
| @@ -36,11 +36,11 @@ COMPILER=${COMPILER:-mxcc} | |||
| COMPILER_FLAGS=${COMPILER_FLAGS:-"-O3 -std=c++17 --extended-lambda -DRUN_FULL_TEST"} | |||
| # ***** 这里是关键修改点1:头文件目录 ***** | |||
| # 现在头文件在 includes/ 目录下 | |||
| # 现在头文件在 utils/ 目录下 | |||
| HEADER_DIR=${HEADER_DIR:-utils} | |||
| # ***** 这里是关键修改点2:源文件目录 ***** | |||
| # 现在源文件在 algorithms/ 目录下 | |||
| # 现在源文件在 ./ 目录下 | |||
| SOURCE_CODE_DIR=${SOURCE_CODE_DIR:-} | |||
| BUILD_DIR=${BUILD_DIR:-build} | |||