You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

topk_pair_algorithm.maca 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. #include "test_utils.h"
  2. #include "performance_utils.h"
  3. #include "yaml_reporter.h"
  4. #include <iostream>
  5. #include <vector>
  6. #include <iomanip>
  7. #include <fstream>
  8. #include <map>
  9. #include <chrono>
  10. // ============================================================================
  11. // 实现标记宏 - 参赛者修改实现时请将此宏设为0
  12. // ============================================================================
  13. #ifndef USE_DEFAULT_REF_IMPL
  14. #define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现
  15. #endif
  16. #if USE_DEFAULT_REF_IMPL
  17. #include <thrust/sort.h>
  18. #include <thrust/device_vector.h>
  19. #include <thrust/execution_policy.h>
  20. #include <thrust/iterator/zip_iterator.h>
  21. #include <thrust/tuple.h>
  22. #include <thrust/copy.h>
  23. #endif
  24. static const int TOPK_VALUES[] = {32, 50, 100, 256, 1024};
  25. static const int NUM_TOPK_VALUES = sizeof(TOPK_VALUES) / sizeof(TOPK_VALUES[0]);
  26. // ============================================================================
  27. // TopkPair算法实现接口
  28. // 参赛者需要替换Thrust实现为自己的高性能kernel
  29. // ============================================================================
  30. template <typename KeyType, typename ValueType>
  31. class TopkPairAlgorithm {
  32. public:
  33. // 主要接口函数 - 参赛者需要实现这个函数
  34. void topk(const KeyType* d_keys_in, KeyType* d_keys_out,
  35. const ValueType* d_values_in, ValueType* d_values_out,
  36. int num_items, int k, bool descending) {
  37. #if !USE_DEFAULT_REF_IMPL
  38. // ========================================
  39. // 参赛者自定义实现区域
  40. // ========================================
  41. // TODO: 参赛者在此实现自己的高性能TopK算法
  42. // 示例:参赛者可以调用多个自定义kernel
  43. // TopkKernel1<<<grid, block>>>(d_keys_in, d_values_in, temp_results, num_items, k);
  44. // TopkKernel2<<<grid, block>>>(temp_results, d_keys_out, d_values_out, k, descending);
  45. #else
  46. // ========================================
  47. // 默认基准实现
  48. // ========================================
  49. KeyType* temp_keys;
  50. ValueType* temp_values;
  51. MACA_CHECK(mcMalloc(&temp_keys, num_items * sizeof(KeyType)));
  52. MACA_CHECK(mcMalloc(&temp_values, num_items * sizeof(ValueType)));
  53. MACA_CHECK(mcMemcpy(temp_keys, d_keys_in, num_items * sizeof(KeyType), mcMemcpyDeviceToDevice));
  54. MACA_CHECK(mcMemcpy(temp_values, d_values_in, num_items * sizeof(ValueType), mcMemcpyDeviceToDevice));
  55. auto key_ptr = thrust::device_pointer_cast(temp_keys);
  56. auto value_ptr = thrust::device_pointer_cast(temp_values);
  57. // 由于greater和less是不同类型,需要分别调用
  58. if (descending) {
  59. thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::greater<KeyType>());
  60. } else {
  61. thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::less<KeyType>());
  62. }
  63. MACA_CHECK(mcMemcpy(d_keys_out, temp_keys, k * sizeof(KeyType), mcMemcpyDeviceToDevice));
  64. MACA_CHECK(mcMemcpy(d_values_out, temp_values, k * sizeof(ValueType), mcMemcpyDeviceToDevice));
  65. mcFree(temp_keys);
  66. mcFree(temp_values);
  67. #endif
  68. }
  69. // 获取当前实现状态
  70. static const char* getImplementationStatus() {
  71. #if USE_DEFAULT_REF_IMPL
  72. return "DEFAULT_REF_IMPL";
  73. #else
  74. return "CUSTOM_IMPL";
  75. #endif
  76. }
  77. private:
  78. // 参赛者可以在这里添加辅助函数和成员变量
  79. // 例如:分块大小、临时缓冲区、多流处理等
  80. };
  81. // ============================================================================
  82. // 测试和性能评估
  83. // ============================================================================
  84. bool testCorrectness() {
  85. std::cout << "TopkPair 正确性测试..." << std::endl;
  86. TestDataGenerator generator;
  87. TopkPairAlgorithm<float, uint32_t> algorithm;
  88. int size = 10000;
  89. auto keys = generator.generateRandomFloats(size);
  90. auto values = generator.generateRandomUint32(size);
  91. // 分配GPU内存
  92. float *d_keys_in, *d_keys_out;
  93. uint32_t *d_values_in, *d_values_out;
  94. MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float)));
  95. MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t)));
  96. MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice));
  97. MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice));
  98. bool allPassed = true;
  99. // 测试不同k值
  100. for (int ki = 0; ki < NUM_TOPK_VALUES && ki < 4; ki++) { // 限制测试范围
  101. int k = TOPK_VALUES[ki];
  102. if (k > size) continue;
  103. std::cout << " 测试 k=" << k << std::endl;
  104. MACA_CHECK(mcMalloc(&d_keys_out, k * sizeof(float)));
  105. MACA_CHECK(mcMalloc(&d_values_out, k * sizeof(uint32_t)));
  106. for (bool descending : {false, true}) {
  107. std::cout << " " << (descending ? "降序" : "升序") << " TopK..." << std::endl;
  108. // CPU参考结果
  109. std::vector<float> cpu_keys_out;
  110. std::vector<uint32_t> cpu_values_out;
  111. cpuTopkPair(keys, values, cpu_keys_out, cpu_values_out, k, descending);
  112. // GPU算法结果
  113. algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
  114. // 获取结果
  115. std::vector<float> gpu_keys_out(k);
  116. std::vector<uint32_t> gpu_values_out(k);
  117. MACA_CHECK(mcMemcpy(gpu_keys_out.data(), d_keys_out, k * sizeof(float), mcMemcpyDeviceToHost));
  118. MACA_CHECK(mcMemcpy(gpu_values_out.data(), d_values_out, k * sizeof(uint32_t), mcMemcpyDeviceToHost));
  119. // 验证结果
  120. bool keysMatch = compareArrays(cpu_keys_out, gpu_keys_out, 1e-5);
  121. bool valuesMatch = compareArrays(cpu_values_out, gpu_values_out);
  122. if (!keysMatch || !valuesMatch) {
  123. std::cout << " 失败: 结果不匹配" << std::endl;
  124. allPassed = false;
  125. } else {
  126. std::cout << " 通过" << std::endl;
  127. }
  128. }
  129. mcFree(d_keys_out);
  130. mcFree(d_values_out);
  131. }
  132. // 清理内存
  133. mcFree(d_keys_in);
  134. mcFree(d_values_in);
  135. return allPassed;
  136. }
  137. void benchmarkPerformance() {
  138. std::cout << "\nTopkPair 性能测试..." << std::endl;
  139. std::cout << "数据类型: <float, uint32_t>" << std::endl;
  140. std::cout << "计算公式:" << std::endl;
  141. std::cout << " 吞吐量 = 元素数 / 时间(s) / 1e9 (G/s)" << std::endl;
  142. TestDataGenerator generator;
  143. PerformanceMeter meter;
  144. TopkPairAlgorithm<float, uint32_t> algorithm;
  145. const int WARMUP_ITERATIONS = 5;
  146. const int BENCHMARK_ITERATIONS = 10;
  147. // 用于YAML报告的数据收集
  148. std::vector<std::map<std::string, std::string>> perf_data;
  149. // 针对不同数据规模测试
  150. for (int size_idx = 0; size_idx < NUM_TEST_SIZES; size_idx++) {
  151. int size = TEST_SIZES[size_idx];
  152. std::cout << "\n数据规模: " << size << std::endl;
  153. std::cout << std::setw(8) << "k值" << std::setw(15) << "升序(ms)" << std::setw(15) << "降序(ms)"
  154. << std::setw(16) << "升序(G/s)" << std::setw(16) << "降序(G/s)" << std::endl;
  155. std::cout << std::string(74, '-') << std::endl;
  156. auto keys = generator.generateRandomFloats(size);
  157. auto values = generator.generateRandomUint32(size);
  158. // 分配GPU内存
  159. float *d_keys_in;
  160. uint32_t *d_values_in;
  161. MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float)));
  162. MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t)));
  163. MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice));
  164. MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice));
  165. for (int ki = 0; ki < NUM_TOPK_VALUES; ki++) {
  166. int k = TOPK_VALUES[ki];
  167. if (k > size) continue;
  168. float *d_keys_out;
  169. uint32_t *d_values_out;
  170. MACA_CHECK(mcMalloc(&d_keys_out, k * sizeof(float)));
  171. MACA_CHECK(mcMalloc(&d_values_out, k * sizeof(uint32_t)));
  172. float asc_time = 0, desc_time = 0;
  173. for (bool descending : {false, true}) {
  174. // Warmup阶段
  175. for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) {
  176. algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
  177. }
  178. // 正式测试阶段
  179. float total_time = 0;
  180. for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) {
  181. meter.startTiming();
  182. algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
  183. total_time += meter.stopTiming();
  184. }
  185. float avg_time = total_time / BENCHMARK_ITERATIONS;
  186. if (descending) {
  187. desc_time = avg_time;
  188. } else {
  189. asc_time = avg_time;
  190. }
  191. }
  192. // 计算性能指标
  193. auto asc_metrics = PerformanceCalculator::calculateTopkPair(size, k, asc_time);
  194. auto desc_metrics = PerformanceCalculator::calculateTopkPair(size, k, desc_time);
  195. // 显示性能数据
  196. PerformanceDisplay::printTopkPairData(k, asc_time, desc_time, asc_metrics, desc_metrics);
  197. // 收集YAML报告数据
  198. auto entry = YAMLPerformanceReporter::createEntry();
  199. entry["data_size"] = std::to_string(size);
  200. entry["k_value"] = std::to_string(k);
  201. entry["asc_time_ms"] = std::to_string(asc_time);
  202. entry["desc_time_ms"] = std::to_string(desc_time);
  203. entry["asc_throughput_gps"] = std::to_string(asc_metrics.throughput_gps);
  204. entry["desc_throughput_gps"] = std::to_string(desc_metrics.throughput_gps);
  205. entry["key_type"] = "float";
  206. entry["value_type"] = "uint32_t";
  207. perf_data.push_back(entry);
  208. mcFree(d_keys_out);
  209. mcFree(d_values_out);
  210. }
  211. mcFree(d_keys_in);
  212. mcFree(d_values_in);
  213. }
  214. // 生成YAML性能报告
  215. YAMLPerformanceReporter::generateTopkPairYAML(perf_data, "topk_pair_performance.yaml");
  216. PerformanceDisplay::printSavedMessage("topk_pair_performance.yaml");
  217. }
  218. // ============================================================================
  219. // 主函数
  220. // ============================================================================
  221. int main(int argc, char* argv[]) {
  222. std::cout << "=== TopkPair 算法测试 ===" << std::endl;
  223. // 检查参数
  224. std::string mode = "all";
  225. if (argc > 1) {
  226. mode = argv[1];
  227. }
  228. bool correctness_passed = true;
  229. bool performance_completed = true;
  230. try {
  231. if (mode == "correctness" || mode == "all") {
  232. correctness_passed = testCorrectness();
  233. }
  234. if (mode == "performance" || mode == "all") {
  235. if (correctness_passed || mode == "performance") {
  236. benchmarkPerformance();
  237. } else {
  238. std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl;
  239. performance_completed = false;
  240. }
  241. }
  242. std::cout << "\n=== 测试完成 ===" << std::endl;
  243. std::cout << "实现状态: " << TopkPairAlgorithm<float, uint32_t>::getImplementationStatus() << std::endl;
  244. if (mode == "all") {
  245. std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl;
  246. std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl;
  247. }
  248. return correctness_passed ? 0 : 1;
  249. } catch (const std::exception& e) {
  250. std::cerr << "测试出错: " << e.what() << std::endl;
  251. return 1;
  252. }
  253. }