|
- // Copyright 2023 The casbin Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- package ai
-
- import (
- "bufio"
- "context"
- "fmt"
- "io"
- "time"
-
- "github.com/sashabaranov/go-openai"
- )
-
- func splitTxt(f io.ReadCloser) []string {
- const maxLength = 210 * 3
- scanner := bufio.NewScanner(f)
- var res []string
- var temp string
-
- for scanner.Scan() {
- line := scanner.Text()
- if len(temp)+len(line) <= maxLength {
- temp += line
- } else {
- res = append(res, temp)
- temp = line
- }
- }
-
- if len(temp) > 0 {
- res = append(res, temp)
- }
-
- return res
- }
-
- func GetSplitTxt(f io.ReadCloser) []string {
- return splitTxt(f)
- }
-
- func getEmbedding(authToken string, text string, timeout int) ([]float32, error) {
- client := getProxyClientFromToken(authToken)
-
- ctx, cancel := context.WithTimeout(context.Background(), time.Duration(30+timeout*2)*time.Second)
- defer cancel()
-
- resp, err := client.CreateEmbeddings(ctx, openai.EmbeddingRequest{
- Input: []string{text},
- Model: openai.AdaEmbeddingV2,
- })
- if err != nil {
- return nil, err
- }
-
- return resp.Data[0].Embedding, nil
- }
-
- func GetEmbeddingSafe(authToken string, text string) ([]float32, error) {
- var embedding []float32
- var err error
- for i := 0; i < 10; i++ {
- embedding, err = getEmbedding(authToken, text, i)
- if err != nil {
- if i > 0 {
- fmt.Printf("\tFailed (%d): %s\n", i+1, err.Error())
- }
- } else {
- break
- }
- }
-
- if err != nil {
- return nil, err
- } else {
- return embedding, nil
- }
- }
-
- func GetNearestVectorIndex(target []float32, vectors [][]float32) int {
- targetNorm := norm(target)
-
- var res int
- max := float32(-1.0)
- for i, vector := range vectors {
- similarity := cosineSimilarity(target, vector, targetNorm)
- if similarity > max {
- max = similarity
- res = i
- }
- }
- return res
- }
|