|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- // Copyright 2023 The casbin Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- package object
-
- import (
- "fmt"
- "math"
- "sort"
- )
-
- func dot(vec1, vec2 []float32) float32 {
- if len(vec1) != len(vec2) {
- panic("Vector lengths do not match")
- }
-
- dotProduct := float32(0.0)
- for i := range vec1 {
- dotProduct += vec1[i] * vec2[i]
- }
- return dotProduct
- }
-
- func norm(vec []float32) float32 {
- normSquared := float32(0.0)
- for _, val := range vec {
- normSquared += val * val
- }
- return float32(math.Sqrt(float64(normSquared)))
- }
-
- func cosineSimilarity(vec1, vec2 []float32, vec1Norm float32) float32 {
- dotProduct := dot(vec1, vec2)
- vec2Norm := norm(vec2)
- if vec2Norm == 0 {
- return 0.0
- }
- return dotProduct / (vec1Norm * vec2Norm)
- }
-
- type SimilarityIndex struct {
- Similarity float32
- Index int
- }
-
- func getNearestVectors(target []float32, vectors [][]float32, n int) ([]SimilarityIndex, error) {
- targetNorm := norm(target)
-
- similarities := []SimilarityIndex{}
- for i, vector := range vectors {
- if len(target) != len(vector) {
- return nil, fmt.Errorf("The target vector's length: [%d] should equal to knowledge vector's length: [%d], target vector = %v, knowledge vector = %v", len(target), len(vector), target, vector)
- }
-
- similarity := cosineSimilarity(target, vector, targetNorm)
- similarities = append(similarities, SimilarityIndex{similarity, i})
- }
-
- sort.Slice(similarities, func(i, j int) bool {
- return similarities[i].Similarity > similarities[j].Similarity
- })
-
- if n > len(similarities) {
- n = len(similarities)
- }
- res := similarities[:n]
- return res, nil
- }
|