|
- import numpy as np
- import torch
- from tqdm import tqdm
-
- from get_data import *
- import os
- import random
-
- from learnware.specification.image import RKMEImageSpecification
- from learnware.reuse.averaging import AveragingReuser
- from utils import generate_uploader, generate_user, ImageDataLoader, train, eval_prediction
- from learnware.learnware import Learnware
- import time
-
- from learnware.market import EasyMarket, BaseUserInfo
- from learnware.market import database_ops
- from learnware.learnware import Learnware
- import learnware.specification as specification
- from learnware.logger import get_module_logger
-
- from shutil import copyfile, rmtree
- import zipfile
-
- logger = get_module_logger("image_test", level="INFO")
- origin_data_root = "./data/origin_data"
- processed_data_root = "./data/processed_data"
- tmp_dir = "./data/tmp"
- learnware_pool_dir = "./data/learnware_pool"
- dataset = "cifar10"
- n_uploaders = 30
- n_users = 20
- n_classes = 10
- data_root = os.path.join(origin_data_root, dataset)
- data_save_root = os.path.join(processed_data_root, dataset)
- user_save_root = os.path.join(data_save_root, "user")
- uploader_save_root = os.path.join(data_save_root, "uploader")
- model_save_root = os.path.join(data_save_root, "uploader_model")
- os.makedirs(data_root, exist_ok=True)
- os.makedirs(user_save_root, exist_ok=True)
- os.makedirs(uploader_save_root, exist_ok=True)
- os.makedirs(model_save_root, exist_ok=True)
-
-
- semantic_specs = [
- {
- "Data": {"Values": ["Tabular"], "Type": "Class"},
- "Task": {"Values": ["Classification"], "Type": "Class"},
- "Library": {"Values": ["Pytorch"], "Type": "Class"},
- "Scenario": {"Values": ["Business"], "Type": "Tag"},
- "Description": {"Values": "", "Type": "String"},
- "Name": {"Values": "learnware_1", "Type": "String"},
- "Output": {"Dimension": 10},
- }
- ]
-
- user_semantic = {
- "Data": {"Values": ["Tabular"], "Type": "Class"},
- "Task": {"Values": ["Classification"], "Type": "Class"},
- "Library": {"Values": ["Pytorch"], "Type": "Class"},
- "Scenario": {"Values": ["Business"], "Type": "Tag"},
- "Description": {"Values": "", "Type": "String"},
- "Name": {"Values": "", "Type": "String"},
- }
-
-
- def prepare_data():
- if dataset == "cifar10":
- X_train, y_train, X_test, y_test = get_cifar10(data_root)
- elif dataset == "mnist":
- X_train, y_train, X_test, y_test = get_mnist(data_root)
- else:
- return
- generate_uploader(X_train, y_train, n_uploaders=n_uploaders, data_save_root=uploader_save_root)
- generate_user(X_test, y_test, n_users=n_users, data_save_root=user_save_root)
-
-
- def prepare_model():
- dataloader = ImageDataLoader(data_save_root, train=True)
- for i in range(n_uploaders):
- logger.info("Train on uploader: %d" % (i))
- X, y = dataloader.get_idx_data(i)
- model = train(X, y, out_classes=n_classes)
- model_save_path = os.path.join(model_save_root, "uploader_%d.pth" % (i))
- torch.save(model.state_dict(), model_save_path)
- logger.info("Model saved to '%s'" % (model_save_path))
-
-
- def prepare_learnware(data_path, model_path, init_file_path, yaml_path, save_root, zip_name):
- os.makedirs(save_root, exist_ok=True)
- tmp_spec_path = os.path.join(save_root, "rkme.json")
- tmp_model_path = os.path.join(save_root, "conv_model.pth")
- tmp_yaml_path = os.path.join(save_root, "learnware.yaml")
- tmp_init_path = os.path.join(save_root, "__init__.py")
- tmp_model_file_path = os.path.join(save_root, "model.py")
- mmodel_file_path = "./example_files/model.py"
-
- # Computing the specification from the whole dataset is too costly.
- X = np.load(data_path)
- indices = np.random.choice(len(X), size=2000, replace=False)
- X_sampled = X[indices]
-
- st = time.time()
- user_spec = RKMEImageSpecification(cuda_idx=0)
- user_spec.generate_stat_spec_from_data(X=X_sampled)
- ed = time.time()
- logger.info("Stat spec generated in %.3f s" % (ed - st))
- user_spec.save(tmp_spec_path)
- copyfile(model_path, tmp_model_path)
- copyfile(yaml_path, tmp_yaml_path)
- copyfile(init_file_path, tmp_init_path)
- copyfile(mmodel_file_path, tmp_model_file_path)
- zip_file_name = os.path.join(learnware_pool_dir, "%s.zip" % (zip_name))
- with zipfile.ZipFile(zip_file_name, "w", compression=zipfile.ZIP_DEFLATED) as zip_obj:
- zip_obj.write(tmp_spec_path, "rkme.json")
- zip_obj.write(tmp_model_path, "conv_model.pth")
- zip_obj.write(tmp_yaml_path, "learnware.yaml")
- zip_obj.write(tmp_init_path, "__init__.py")
- zip_obj.write(tmp_model_file_path, "model.py")
- rmtree(save_root)
- logger.info("New Learnware Saved to %s" % (zip_file_name))
- return zip_file_name
-
-
- def prepare_market():
- image_market = EasyMarket(market_id="cifar10", rebuild=True)
- try:
- rmtree(learnware_pool_dir)
- except:
- pass
- os.makedirs(learnware_pool_dir, exist_ok=True)
- for i in tqdm(range(n_uploaders), total=n_uploaders, desc="Preparing..."):
- data_path = os.path.join(uploader_save_root, "uploader_%d_X.npy" % (i))
- model_path = os.path.join(model_save_root, "uploader_%d.pth" % (i))
- init_file_path = "./example_files/example_init.py"
- yaml_file_path = "./example_files/example_yaml.yaml"
- new_learnware_path = prepare_learnware(
- data_path, model_path, init_file_path, yaml_file_path, tmp_dir, "%s_%d" % (dataset, i)
- )
- semantic_spec = semantic_specs[0]
- semantic_spec["Name"]["Values"] = "learnware_%d" % (i)
- semantic_spec["Description"]["Values"] = "test_learnware_number_%d" % (i)
- image_market.add_learnware(new_learnware_path, semantic_spec)
-
- logger.info("Total Item: %d" % (len(image_market)))
- curr_inds = image_market._get_ids()
- logger.info("Available ids: " + str(curr_inds))
-
-
- def test_search(gamma=0.1, load_market=True):
- if load_market:
- image_market = EasyMarket(market_id="cifar10")
- else:
- prepare_market()
- image_market = EasyMarket(market_id="cifar10")
- logger.info("Number of items in the market: %d" % len(image_market))
-
- select_list = []
- avg_list = []
- improve_list = []
- job_selector_score_list = []
- ensemble_score_list = []
- for i in tqdm(range(n_users), total=n_users, desc="Searching..."):
- user_data_path = os.path.join(user_save_root, "user_%d_X.npy" % (i))
- user_label_path = os.path.join(user_save_root, "user_%d_y.npy" % (i))
- user_data = np.load(user_data_path)
- user_label = np.load(user_label_path)
- user_stat_spec = RKMEImageSpecification(cuda_idx=0)
- user_stat_spec.generate_stat_spec_from_data(X=user_data, resize=False)
- user_info = BaseUserInfo(semantic_spec=user_semantic, stat_info={"RKMETableSpecification": user_stat_spec})
- logger.info("Searching Market for user: %d" % i)
- sorted_score_list, single_learnware_list, mixture_score, mixture_learnware_list = image_market.search_learnware(
- user_info
- )
- acc_list = []
- for idx, (score, learnware) in enumerate(zip(sorted_score_list[:5], single_learnware_list[:5])):
- pred_y = learnware.predict(user_data)
- acc = eval_prediction(pred_y, user_label)
- acc_list.append(acc)
- logger.info("Search rank: %d, score: %.3f, learnware_id: %s, acc: %.3f" % (idx, score, learnware.id, acc))
-
- # test reuse (job selector)
- # reuse_baseline = JobSelectorReuser(learnware_list=mixture_learnware_list, herding_num=100)
- # reuse_predict = reuse_baseline.predict(user_data=user_data)
- # reuse_score = eval_prediction(reuse_predict, user_label)
- # job_selector_score_list.append(reuse_score)
- # print(f"mixture reuse loss: {reuse_score}")
-
- # test reuse (ensemble)
- reuse_ensemble = AveragingReuser(learnware_list=single_learnware_list[:3], mode="vote_by_prob")
- ensemble_predict_y = reuse_ensemble.predict(user_data=user_data)
- ensemble_score = eval_prediction(ensemble_predict_y, user_label)
- ensemble_score_list.append(ensemble_score)
- print(f"reuse accuracy (vote_by_prob): {ensemble_score}\n")
-
- select_list.append(acc_list[0])
- avg_list.append(np.mean(acc_list))
- improve_list.append((acc_list[0] - np.mean(acc_list)) / np.mean(acc_list))
-
- logger.info(
- "Accuracy of selected learnware: %.3f +/- %.3f, Average performance: %.3f +/- %.3f"
- % (np.mean(select_list), np.std(select_list), np.mean(avg_list), np.std(avg_list))
- )
- logger.info(
- "Ensemble Reuse Performance: %.3f +/- %.3f" % (np.mean(ensemble_score_list), np.std(ensemble_score_list))
- )
-
-
- if __name__ == "__main__":
- logger.info("=" * 40)
- logger.info(f"n_uploaders:\t{n_uploaders}")
- logger.info(f"n_users:\t{n_users}")
- logger.info("=" * 40)
-
- prepare_data()
- prepare_model()
- test_search(load_market=False)
|