import os import time import pandas import random import tempfile import numpy as np from learnware.client import LearnwareClient from learnware.logger import get_module_logger from learnware.market import instantiate_learnware_market from learnware.tests.benchmarks import LearnwareBenchmark from config import * from methods import * from utils import process_single_aug logger = get_module_logger("base_table", level="INFO") class TableWorkflow: def __init__(self, benchmark_config, name="easy", rebuild=False): self.root_path = os.path.abspath(os.path.join(__file__, "..")) self.result_path = os.path.join(self.root_path, "results") self.curves_result_path = os.path.join(self.root_path, "curves") os.makedirs(self.result_path, exist_ok=True) os.makedirs(self.curves_result_path, exist_ok=True) self._prepare_market(benchmark_config, name, rebuild) @staticmethod def _limited_data(method, test_info, loss_func): all_scores = [] for subset in test_info["train_subsets"]: subset_scores = [] for sample in subset: x_train, y_train = sample["x_train"], sample["y_train"] model = method(x_train, y_train, test_info) subset_scores.append(loss_func(model.predict(test_info["test_x"]), test_info["test_y"])) all_scores.append(subset_scores) return all_scores @staticmethod def get_train_subsets(idx, train_x, train_y): np.random.seed(idx) random.seed(idx) train_subsets = [] for n_label, repeated in zip(n_labeled_list, n_repeat_list): train_subsets.append([]) if n_label > len(train_x): n_label = len(train_x) for _ in range(repeated): x_train, y_train = zip(*random.sample(list(zip(train_x, train_y)), k=n_label)) train_subsets[-1].append({"x_train": np.array(x_train), "y_train": np.array(list(y_train))}) return train_subsets def _prepare_market(self, benchmark_config, name, rebuild): client = LearnwareClient() self.benchmark = LearnwareBenchmark().get_benchmark(benchmark_config) self.market = instantiate_learnware_market(market_id=self.benchmark.name, name=name, rebuild=rebuild) self.user_semantic = client.get_semantic_specification(self.benchmark.learnware_ids[0]) self.user_semantic["Name"]["Values"] = "" if len(self.market) == 0 or rebuild == True: for learnware_id in self.benchmark.learnware_ids: with tempfile.TemporaryDirectory(prefix="table_benchmark_") as tempdir: zip_path = os.path.join(tempdir, f"{learnware_id}.zip") for i in range(20): try: semantic_spec = client.get_semantic_specification(learnware_id) client.download_learnware(learnware_id, zip_path) self.market.add_learnware(zip_path, semantic_spec) break except: time.sleep(1) continue def test_method(self, test_info, recorders, loss_func=loss_func_rmse): method_name_full = test_info["method_name"] method_name = method_name_full if method_name_full == "user_model" else "_".join(method_name_full.split("_")[1:]) user, idx = test_info["user"], test_info["idx"] recorder = recorders[method_name_full] save_root_path = os.path.join(self.curves_result_path, user, f"{user}_{idx}") os.makedirs(save_root_path, exist_ok=True) save_path = os.path.join(save_root_path, f"{method_name}.json") if method_name_full == "hetero_single_aug": if test_info["force"] or recorder.should_test_method(user, idx, save_path): for learnware in test_info["learnwares"]: test_info["single_learnware"] = [learnware] scores = self._limited_data(test_methods[method_name_full], test_info, loss_func) recorder.record(user, scores) process_single_aug(user, idx, scores, recorders, save_root_path) recorder.save(save_path) else: process_single_aug(user, idx, recorder.data[user], recorders, save_root_path) else: if test_info["force"] or recorder.should_test_method(user, idx, save_path): scores = self._limited_data(test_methods[method_name_full], test_info, loss_func) recorder.record(user, scores) recorder.save(save_path) logger.info(f"Method {method_name} on {user}_{idx} finished")