import zipfile import numpy as np from learnware.learnware import get_learnware_from_dirpath from learnware.client.container import LearnwaresContainer from learnware.reuse import AveragingReuser from learnware.tests.module import get_semantic_specification if __name__ == "__main__": semantic_specification = get_semantic_specification() zip_paths = [ "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/rf_tic.zip", "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/svc_tic.zip", ] dir_paths = [ "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/rf_tic", "/home/bixd/workspace/learnware/Learnware/tests/test_learnware_client/svc_tic", ] learnware_list = [] for id, (zip_path, dir_path) in enumerate(zip(zip_paths, dir_paths)): with zipfile.ZipFile(zip_path, "r") as z_file: z_file.extractall(dir_path) learnware = get_learnware_from_dirpath(f"test_id{id}", semantic_specification, dir_path) learnware_list.append(learnware) with LearnwaresContainer(learnware_list) as env_container: learnware_list = env_container.get_learnwares_with_container() reuser = AveragingReuser(learnware_list, mode="vote") input_array = np.random.randint(0, 3, size=(20, 9)) print(reuser.predict(input_array).argmax(axis=1)) for id, ind_learner in enumerate(learnware_list): print(f"learner_{id}", reuser.predict(input_array).argmax(axis=1))