import os import pickle import numpy as np from learnware.model import BaseModel class Model(BaseModel): def __init__(self): super(Model, self).__init__(input_shape=(1,), output_shape=(1,)) dir_path = os.path.dirname(os.path.abspath(__file__)) modelv_path = os.path.join(dir_path, "modelv.pth") with open(modelv_path, "rb") as f: self.modelv = pickle.load(f) modell_path = os.path.join(dir_path, "modell.pth") with open(modell_path, "rb") as f: self.modell = pickle.load(f) def fit(self, X: np.ndarray, y: np.ndarray): pass def predict(self, X: np.ndarray) -> np.ndarray: return self.modell.predict(self.modelv.transform(X)) def finetune(self, X: np.ndarray, y: np.ndarray): pass