| @@ -46,16 +46,16 @@ class TestCheckLearnware(unittest.TestCase): | |||
| semantic_spec = json.load(json_file) | |||
| LearnwareClient.check_learnware(self.zip_path, semantic_spec) | |||
| # def test_check_learnware_image(self): | |||
| # learnware_id = "00000677" | |||
| # with tempfile.TemporaryDirectory(prefix="learnware_") as tempdir: | |||
| # self.zip_path = os.path.join(tempdir, "test.zip") | |||
| # self.client.download_learnware(learnware_id, self.zip_path) | |||
| # with zipfile.ZipFile(self.zip_path, "r") as zip_file: | |||
| # with zip_file.open("semantic_specification.json") as json_file: | |||
| # semantic_spec = json.load(json_file) | |||
| # LearnwareClient.check_learnware(self.zip_path, semantic_spec) | |||
| def test_check_learnware_image(self): | |||
| learnware_id = "00000677" | |||
| with tempfile.TemporaryDirectory(prefix="learnware_") as tempdir: | |||
| self.zip_path = os.path.join(tempdir, "test.zip") | |||
| self.client.download_learnware(learnware_id, self.zip_path) | |||
| with zipfile.ZipFile(self.zip_path, "r") as zip_file: | |||
| with zip_file.open("semantic_specification.json") as json_file: | |||
| semantic_spec = json.load(json_file) | |||
| LearnwareClient.check_learnware(self.zip_path, semantic_spec) | |||
| def test_check_learnware_text(self): | |||
| learnware_id = "00000662" | |||
| @@ -16,7 +16,7 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| self.client = LearnwareClient() | |||
| root = os.path.dirname(__file__) | |||
| self.learnware_ids = ["00000084", "00000154", "00000155"] | |||
| self.learnware_ids = ["00000910", "00000899", "00000900"] | |||
| self.zip_paths = [os.path.join(root, x) for x in ["1.zip", "2.zip", "3.zip"]] | |||
| def test_load_single_learnware_by_zippath(self): | |||
| @@ -26,8 +26,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| learnware_list = [ | |||
| self.client.load_learnware(learnware_path=zippath, runnable_option="conda") for zippath in self.zip_paths | |||
| ] | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||
| @@ -38,8 +38,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| self.client.download_learnware(learnware_id, zip_path) | |||
| learnware_list = self.client.load_learnware(learnware_path=self.zip_paths, runnable_option="conda") | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||
| @@ -49,8 +49,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| learnware_list = [ | |||
| self.client.load_learnware(learnware_id=idx, runnable_option="conda") for idx in self.learnware_ids | |||
| ] | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||
| @@ -58,8 +58,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| def test_load_multi_learnware_by_id(self): | |||
| learnware_list = self.client.load_learnware(learnware_id=self.learnware_ids, runnable_option="conda") | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||
| @@ -16,7 +16,7 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| self.client = LearnwareClient() | |||
| root = os.path.dirname(__file__) | |||
| self.learnware_ids = ["00000084", "00000154", "00000155"] | |||
| self.learnware_ids = ["00000910", "00000899", "00000900"] | |||
| self.zip_paths = [os.path.join(root, x) for x in ["1.zip", "2.zip", "3.zip"]] | |||
| def test_load_multi_learnware_by_zippath(self): | |||
| @@ -24,8 +24,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| self.client.download_learnware(learnware_id, zip_path) | |||
| learnware_list = self.client.load_learnware(learnware_path=self.zip_paths, runnable_option="docker") | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||
| @@ -33,8 +33,8 @@ class TestLearnwareLoad(unittest.TestCase): | |||
| def test_load_multi_learnware_by_id(self): | |||
| learnware_list = self.client.load_learnware(learnware_id=self.learnware_ids, runnable_option="docker") | |||
| reuser = AveragingReuser(learnware_list, mode="vote_by_label") | |||
| input_array = np.random.random(size=(20, 13)) | |||
| reuser = AveragingReuser(learnware_list, mode="mean") | |||
| input_array = np.random.random(size=(20, 40)) | |||
| print(reuser.predict(input_array)) | |||
| for learnware in learnware_list: | |||