|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- from learnware.tests.benchmarks import BenchmarkConfig
-
-
- n_labeled_list = [100, 200, 500, 1000, 2000, 4000, 6000, 8000, 10000]
- n_repeat_list = [10, 10, 10, 3, 3, 3, 3, 3, 3]
-
- styles = {
- 'user_model': {"color": "navy", "marker": "o", "linestyle": "-"},
- 'select_score': {'color': 'gold', 'marker': 's', 'linestyle': '--'},
- 'oracle_score': {'color': 'darkorange', 'marker': '^', 'linestyle': '-.'},
- 'mean_score': {'color': 'gray', 'marker': 'x', 'linestyle': ':'},
- 'single_aug': {'color': 'gold', 'marker': 's', 'linestyle': '--'},
- 'multiple_avg': {'color': 'blue', 'marker': '*', 'linestyle': '-'},
- 'multiple_aug': {'color': 'purple', 'marker': 'd', 'linestyle': '--'},
- 'ensemble_pruning': {"color": "magenta", "marker": "d", "linestyle": "-."}
- }
-
- labels = {
- 'user_model': "User Model",
- 'single_aug': "Single Learnware Reuse (Select)",
- "select_score": "Single Learnware Reuse (Select)",
- 'multiple_aug': "Multiple Learnware Reuse (FeatAug)",
- 'ensemble_pruning': "Multiple Learnware Reuse (EnsemblePrune)",
- 'multiple_avg': "Multiple Learnware Reuse (Averaging)"
- }
-
- align_model_params = {
- "network_type": "ArbitraryMapping", # ["ArbitraryMapping", "BaseMapping", "BaseMapping_BN", "BaseMapping_Dropout"]
- "num_epoch": 50,
- "lr": 1e-5,
- "dropout_ratio": 0.2,
- "activation": "relu",
- "use_bn": True,
- "hidden_dims": [128, 256, 128, 256],
- }
-
- market_mapping_params = {
- "lr": 1e-4, # [5e-5, 1e-4, 2e-4, 5e-4],
- "num_epoch": 50,
- "batch_size": 64, # [64, 128, 256, 512, 1024],
- "num_partition": 2, # [2, 3, 4], # num of column partitions for pos/neg sampling
- "overlap_ratio": 0.7, # [0.1, 0.3, 0.5, 0.7], # specify the overlap ratio of column partitions during the CL
- "hidden_dim": 256, # [64, 128, 256, 512, 768, 1024], # the dimension of hidden embeddings
- "num_layer": 6, # [4, 6, 8, 10, 12, 14, 16, 20], # the number of transformer layers used in the encoder
- "num_attention_head": 8, # [4, 8, 16], # the numebr of heads of multihead self-attention layer in the transformers, should be divisible by hidden_dim
- "hidden_dropout_prob": 0.5, # [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], # the dropout ratio in the transformer encoder
- "ffn_dim": 512, # [128, 256, 512, 768, 1024], # the dimension of feed-forward layer in the transformer layer
- "activation": "leakyrelu",
- }
-
- user_model_params = {
- "Corporacion": {
- "lgb": {
- "params": {
- "num_leaves": 31,
- "objective": "regression",
- "learning_rate": 0.1,
- "feature_fraction": 0.8,
- "bagging_fraction": 0.8,
- "bagging_freq": 2,
- "metric": "l2",
- "num_threads": 4,
- "verbose": -1,
- },
- "MAX_ROUNDS": 500,
- "early_stopping_rounds": 50,
- }
- }
- }
-
- homo_table_benchmark_config = BenchmarkConfig(
- name="Corporacion",
- user_num=54,
- learnware_ids=[
- "00000912",
- "00000911",
- "00000910",
- "00000909",
- "00000908",
- "00000907",
- "00000906",
- "00000905",
- "00000904",
- "00000903",
- "00000902",
- "00000901",
- "00000900",
- "00000899",
- "00000898",
- "00000897",
- "00000896",
- "00000895",
- "00000894",
- "00000893",
- "00000892",
- "00000891",
- "00000890",
- "00000889",
- "00000888",
- "00000887",
- "00000886",
- "00000885",
- "00000884",
- "00000883",
- "00000882",
- "00000881",
- "00000880",
- "00000879",
- "00000878",
- "00000877",
- "00000876",
- "00000875",
- "00000874",
- "00000873",
- "00000872",
- "00000871",
- "00000870",
- "00000869",
- "00000868",
- "00000867",
- "00000866",
- "00000865",
- "00000864",
- "00000863",
- "00000862",
- "00000861",
- "00000860",
- "00000859"
- ],
- test_data_path="Corporacion/test_data.zip",
- train_data_path="Corporacion/train_data.zip",
- extra_info_path="Corporacion/extra_info.zip",
- )
|