|
- # Loss functions
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy
- from utils.torch_utils import is_parallel
-
-
- def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
- # return positive, negative label smoothing BCE targets
- return 1.0 - 0.5 * eps, 0.5 * eps
-
-
- class BCEBlurWithLogitsLoss(nn.Module):
- # BCEwithLogitLoss() with reduced missing label effects.
- def __init__(self, alpha=0.05):
- super(BCEBlurWithLogitsLoss, self).__init__()
- self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
- self.alpha = alpha
-
- def forward(self, pred, true):
- loss = self.loss_fcn(pred, true)
- pred = torch.sigmoid(pred) # prob from logits
- dx = pred - true # reduce only missing label effects
- # dx = (pred - true).abs() # reduce missing label and false label effects
- alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
- loss *= alpha_factor
- return loss.mean()
-
-
- class SigmoidBin(nn.Module):
- stride = None # strides computed during build
- export = False # onnx export
-
- def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0):
- super(SigmoidBin, self).__init__()
-
- self.bin_count = bin_count
- self.length = bin_count + 1
- self.min = min
- self.max = max
- self.scale = float(max - min)
- self.shift = self.scale / 2.0
-
- self.use_loss_regression = use_loss_regression
- self.use_fw_regression = use_fw_regression
- self.reg_scale = reg_scale
- self.BCE_weight = BCE_weight
-
- start = min + (self.scale/2.0) / self.bin_count
- end = max - (self.scale/2.0) / self.bin_count
- step = self.scale / self.bin_count
- self.step = step
- #print(f" start = {start}, end = {end}, step = {step} ")
-
- bins = torch.range(start, end + 0.0001, step).float()
- self.register_buffer('bins', bins)
-
-
- self.cp = 1.0 - 0.5 * smooth_eps
- self.cn = 0.5 * smooth_eps
-
- self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight]))
- self.MSELoss = nn.MSELoss()
-
- def get_length(self):
- return self.length
-
- def forward(self, pred):
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
-
- pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step
- pred_bin = pred[..., 1:(1+self.bin_count)]
-
- _, bin_idx = torch.max(pred_bin, dim=-1)
- bin_bias = self.bins[bin_idx]
-
- if self.use_fw_regression:
- result = pred_reg + bin_bias
- else:
- result = bin_bias
- result = result.clamp(min=self.min, max=self.max)
-
- return result
-
-
- def training_loss(self, pred, target):
- assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length)
- assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0])
- device = pred.device
-
- pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step
- pred_bin = pred[..., 1:(1+self.bin_count)]
-
- diff_bin_target = torch.abs(target[..., None] - self.bins)
- _, bin_idx = torch.min(diff_bin_target, dim=-1)
-
- bin_bias = self.bins[bin_idx]
- bin_bias.requires_grad = False
- result = pred_reg + bin_bias
-
- target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets
- n = pred.shape[0]
- target_bins[range(n), bin_idx] = self.cp
-
- loss_bin = self.BCEbins(pred_bin, target_bins) # BCE
-
- if self.use_loss_regression:
- loss_regression = self.MSELoss(result, target) # MSE
- loss = loss_bin + loss_regression
- else:
- loss = loss_bin
-
- out_result = result.clamp(min=self.min, max=self.max)
-
- return loss, out_result
-
-
- class FocalLoss(nn.Module):
- # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
- super(FocalLoss, self).__init__()
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
- self.gamma = gamma
- self.alpha = alpha
- self.reduction = loss_fcn.reduction
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
-
- def forward(self, pred, true):
- loss = self.loss_fcn(pred, true)
- # p_t = torch.exp(-loss)
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
-
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
- pred_prob = torch.sigmoid(pred) # prob from logits
- p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
- modulating_factor = (1.0 - p_t) ** self.gamma
- loss *= alpha_factor * modulating_factor
-
- if self.reduction == 'mean':
- return loss.mean()
- elif self.reduction == 'sum':
- return loss.sum()
- else: # 'none'
- return loss
-
-
- class QFocalLoss(nn.Module):
- # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
- def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
- super(QFocalLoss, self).__init__()
- self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
- self.gamma = gamma
- self.alpha = alpha
- self.reduction = loss_fcn.reduction
- self.loss_fcn.reduction = 'none' # required to apply FL to each element
-
- def forward(self, pred, true):
- loss = self.loss_fcn(pred, true)
-
- pred_prob = torch.sigmoid(pred) # prob from logits
- alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
- modulating_factor = torch.abs(true - pred_prob) ** self.gamma
- loss *= alpha_factor * modulating_factor
-
- if self.reduction == 'mean':
- return loss.mean()
- elif self.reduction == 'sum':
- return loss.sum()
- else: # 'none'
- return loss
-
- class RankSort(torch.autograd.Function):
- @staticmethod
- def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10):
-
- classification_grads=torch.zeros(logits.shape).cuda()
-
- #Filter fg logits
- fg_labels = (targets > 0.)
- fg_logits = logits[fg_labels]
- fg_targets = targets[fg_labels]
- fg_num = len(fg_logits)
-
- #Do not use bg with scores less than minimum fg logit
- #since changing its score does not have an effect on precision
- threshold_logit = torch.min(fg_logits)-delta_RS
- relevant_bg_labels=((targets==0) & (logits>=threshold_logit))
-
- relevant_bg_logits = logits[relevant_bg_labels]
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
- sorting_error=torch.zeros(fg_num).cuda()
- ranking_error=torch.zeros(fg_num).cuda()
- fg_grad=torch.zeros(fg_num).cuda()
-
- #sort the fg logits
- order=torch.argsort(fg_logits)
- #Loops over each positive following the order
- for ii in order:
- # Difference Transforms (x_ij)
- fg_relations=fg_logits-fg_logits[ii]
- bg_relations=relevant_bg_logits-fg_logits[ii]
-
- if delta_RS > 0:
- fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1)
- bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1)
- else:
- fg_relations = (fg_relations >= 0).float()
- bg_relations = (bg_relations >= 0).float()
-
- # Rank of ii among pos and false positive number (bg with larger scores)
- rank_pos=torch.sum(fg_relations)
- FP_num=torch.sum(bg_relations)
-
- # Rank of ii among all examples
- rank=rank_pos+FP_num
-
- # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7)
- ranking_error[ii]=FP_num/rank
-
- # Current sorting error of example ii. (Eq. 7)
- current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos
-
- #Find examples in the target sorted order for example ii
- iou_relations = (fg_targets >= fg_targets[ii])
- target_sorted_order = iou_relations * fg_relations
-
- #The rank of ii among positives in sorted order
- rank_pos_target = torch.sum(target_sorted_order)
-
- #Compute target sorting error. (Eq. 8)
- #Since target ranking error is 0, this is also total target error
- target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target
-
- #Compute sorting error on example ii
- sorting_error[ii] = current_sorting_error - target_sorting_error
-
- #Identity Update for Ranking Error
- if FP_num > eps:
- #For ii the update is the ranking error
- fg_grad[ii] -= ranking_error[ii]
- #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num)
- relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num))
-
- #Find the positives that are misranked (the cause of the error)
- #These are the ones with smaller IoU but larger logits
- missorted_examples = (~ iou_relations) * fg_relations
-
- #Denominotor of sorting pmf
- sorting_pmf_denom = torch.sum(missorted_examples)
-
- #Identity Update for Sorting Error
- if sorting_pmf_denom > eps:
- #For ii the update is the sorting error
- fg_grad[ii] -= sorting_error[ii]
- #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom)
- fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom))
-
- #Normalize gradients by number of positives
- classification_grads[fg_labels]= (fg_grad/fg_num)
- classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num)
-
- ctx.save_for_backward(classification_grads)
-
- return ranking_error.mean(), sorting_error.mean()
-
- @staticmethod
- def backward(ctx, out_grad1, out_grad2):
- g1, =ctx.saved_tensors
- return g1*out_grad1, None, None, None
-
- class aLRPLoss(torch.autograd.Function):
- @staticmethod
- def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5):
- classification_grads=torch.zeros(logits.shape).cuda()
-
- #Filter fg logits
- fg_labels = (targets == 1)
- fg_logits = logits[fg_labels]
- fg_num = len(fg_logits)
-
- #Do not use bg with scores less than minimum fg logit
- #since changing its score does not have an effect on precision
- threshold_logit = torch.min(fg_logits)-delta
-
- #Get valid bg logits
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
- relevant_bg_logits=logits[relevant_bg_labels]
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
- rank=torch.zeros(fg_num).cuda()
- prec=torch.zeros(fg_num).cuda()
- fg_grad=torch.zeros(fg_num).cuda()
-
- max_prec=0
- #sort the fg logits
- order=torch.argsort(fg_logits)
- #Loops over each positive following the order
- for ii in order:
- #x_ij s as score differences with fgs
- fg_relations=fg_logits-fg_logits[ii]
- #Apply piecewise linear function and determine relations with fgs
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
- #Discard i=j in the summation in rank_pos
- fg_relations[ii]=0
-
- #x_ij s as score differences with bgs
- bg_relations=relevant_bg_logits-fg_logits[ii]
- #Apply piecewise linear function and determine relations with bgs
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
-
- #Compute the rank of the example within fgs and number of bgs with larger scores
- rank_pos=1+torch.sum(fg_relations)
- FP_num=torch.sum(bg_relations)
- #Store the total since it is normalizer also for aLRP Regression error
- rank[ii]=rank_pos+FP_num
-
- #Compute precision for this example to compute classification loss
- prec[ii]=rank_pos/rank[ii]
- #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads
- if FP_num > eps:
- fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii]
- relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num))
-
- #aLRP with grad formulation fg gradient
- classification_grads[fg_labels]= fg_grad
- #aLRP with grad formulation bg gradient
- classification_grads[relevant_bg_labels]= relevant_bg_grad
-
- classification_grads /= (fg_num)
-
- cls_loss=1-prec.mean()
- ctx.save_for_backward(classification_grads)
-
- return cls_loss, rank, order
-
- @staticmethod
- def backward(ctx, out_grad1, out_grad2, out_grad3):
- g1, =ctx.saved_tensors
- return g1*out_grad1, None, None, None, None
-
-
- class APLoss(torch.autograd.Function):
- @staticmethod
- def forward(ctx, logits, targets, delta=1.):
- classification_grads=torch.zeros(logits.shape).cuda()
-
- #Filter fg logits
- fg_labels = (targets == 1)
- fg_logits = logits[fg_labels]
- fg_num = len(fg_logits)
-
- #Do not use bg with scores less than minimum fg logit
- #since changing its score does not have an effect on precision
- threshold_logit = torch.min(fg_logits)-delta
-
- #Get valid bg logits
- relevant_bg_labels=((targets==0)&(logits>=threshold_logit))
- relevant_bg_logits=logits[relevant_bg_labels]
- relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda()
- rank=torch.zeros(fg_num).cuda()
- prec=torch.zeros(fg_num).cuda()
- fg_grad=torch.zeros(fg_num).cuda()
-
- max_prec=0
- #sort the fg logits
- order=torch.argsort(fg_logits)
- #Loops over each positive following the order
- for ii in order:
- #x_ij s as score differences with fgs
- fg_relations=fg_logits-fg_logits[ii]
- #Apply piecewise linear function and determine relations with fgs
- fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1)
- #Discard i=j in the summation in rank_pos
- fg_relations[ii]=0
-
- #x_ij s as score differences with bgs
- bg_relations=relevant_bg_logits-fg_logits[ii]
- #Apply piecewise linear function and determine relations with bgs
- bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1)
-
- #Compute the rank of the example within fgs and number of bgs with larger scores
- rank_pos=1+torch.sum(fg_relations)
- FP_num=torch.sum(bg_relations)
- #Store the total since it is normalizer also for aLRP Regression error
- rank[ii]=rank_pos+FP_num
-
- #Compute precision for this example
- current_prec=rank_pos/rank[ii]
-
- #Compute interpolated AP and store gradients for relevant bg examples
- if (max_prec<=current_prec):
- max_prec=current_prec
- relevant_bg_grad += (bg_relations/rank[ii])
- else:
- relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec)))
-
- #Store fg gradients
- fg_grad[ii]=-(1-max_prec)
- prec[ii]=max_prec
-
- #aLRP with grad formulation fg gradient
- classification_grads[fg_labels]= fg_grad
- #aLRP with grad formulation bg gradient
- classification_grads[relevant_bg_labels]= relevant_bg_grad
-
- classification_grads /= fg_num
-
- cls_loss=1-prec.mean()
- ctx.save_for_backward(classification_grads)
-
- return cls_loss
-
- @staticmethod
- def backward(ctx, out_grad1):
- g1, =ctx.saved_tensors
- return g1*out_grad1, None, None
-
-
- class ComputeLoss:
- # Compute losses
- def __init__(self, model, autobalance=False):
- super(ComputeLoss, self).__init__()
- device = next(model.parameters()).device # get model device
- h = model.hyp # hyperparameters
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
-
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
-
- # Focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7
- #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
- for k in 'na', 'nc', 'nl', 'anchors':
- setattr(self, k, getattr(det, k))
-
- def __call__(self, p, targets): # predictions, targets, model
- device = targets.device
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
- tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
-
- # Losses
- for i, pi in enumerate(p): # layer index, layer predictions
- b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
-
- n = b.shape[0] # number of targets
- if n:
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
-
- # Regression
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
- pbox = torch.cat((pxy, pwh), 1) # predicted box
- iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
- lbox += (1.0 - iou).mean() # iou loss
-
- # Objectness
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
-
- # Classification
- if self.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
- t[range(n), tcls[i]] = self.cp
- #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype)
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- obji = self.BCEobj(pi[..., 4], tobj)
- lobj += obji * self.balance[i] # obj loss
- if self.autobalance:
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
- if self.autobalance:
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
- lbox *= self.hyp['box']
- lobj *= self.hyp['obj']
- lcls *= self.hyp['cls']
- bs = tobj.shape[0] # batch size
-
- loss = lbox + lobj + lcls
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
-
- def build_targets(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- tcls, tbox, indices, anch = [], [], [], []
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
-
- g = 0.5 # bias
- off = torch.tensor([[0, 0],
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ], device=targets.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors = self.anchors[i]
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain
- if nt:
- # Matches
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- a = t[:, 6].long() # anchor indices
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
- tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
- anch.append(anchors[a]) # anchors
- tcls.append(c) # class
-
- return tcls, tbox, indices, anch
-
-
- class ComputeLossOTA:
- # Compute losses
- def __init__(self, model, autobalance=False):
- super(ComputeLossOTA, self).__init__()
- device = next(model.parameters()).device # get model device
- h = model.hyp # hyperparameters
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
-
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
-
- # Focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
- setattr(self, k, getattr(det, k))
-
- def __call__(self, p, targets, imgs): # predictions, targets, model
- device = targets.device
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
-
-
- # Losses
- for i, pi in enumerate(p): # layer index, layer predictions
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
-
- n = b.shape[0] # number of targets
- if n:
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
-
- # Regression
- grid = torch.stack([gi, gj], dim=1)
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
- #pxy = ps[:, :2].sigmoid() * 3. - 1.
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
- pbox = torch.cat((pxy, pwh), 1) # predicted box
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
- selected_tbox[:, :2] -= grid
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
- lbox += (1.0 - iou).mean() # iou loss
-
- # Objectness
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
-
- # Classification
- selected_tcls = targets[i][:, 1].long()
- if self.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
- t[range(n), selected_tcls] = self.cp
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- obji = self.BCEobj(pi[..., 4], tobj)
- lobj += obji * self.balance[i] # obj loss
- if self.autobalance:
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
- if self.autobalance:
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
- lbox *= self.hyp['box']
- lobj *= self.hyp['obj']
- lcls *= self.hyp['cls']
- bs = tobj.shape[0] # batch size
-
- loss = lbox + lobj + lcls
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
-
- def build_targets(self, p, targets, imgs):
-
- #indices, anch = self.find_positive(p, targets)
- indices, anch = self.find_3_positive(p, targets)
- #indices, anch = self.find_4_positive(p, targets)
- #indices, anch = self.find_5_positive(p, targets)
- #indices, anch = self.find_9_positive(p, targets)
-
- matching_bs = [[] for pp in p]
- matching_as = [[] for pp in p]
- matching_gjs = [[] for pp in p]
- matching_gis = [[] for pp in p]
- matching_targets = [[] for pp in p]
- matching_anchs = [[] for pp in p]
-
- nl = len(p)
-
- for batch_idx in range(p[0].shape[0]):
-
- b_idx = targets[:, 0]==batch_idx
- this_target = targets[b_idx]
- if this_target.shape[0] == 0:
- continue
-
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
- txyxy = xywh2xyxy(txywh)
-
- pxyxys = []
- p_cls = []
- p_obj = []
- from_which_layer = []
- all_b = []
- all_a = []
- all_gj = []
- all_gi = []
- all_anch = []
-
- for i, pi in enumerate(p):
-
- b, a, gj, gi = indices[i]
- idx = (b == batch_idx)
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
- all_b.append(b)
- all_a.append(a)
- all_gj.append(gj)
- all_gi.append(gi)
- all_anch.append(anch[i][idx])
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
-
- fg_pred = pi[b, a, gj, gi]
- p_obj.append(fg_pred[:, 4:5])
- p_cls.append(fg_pred[:, 5:])
-
- grid = torch.stack([gi, gj], dim=1)
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
- pxywh = torch.cat([pxy, pwh], dim=-1)
- pxyxy = xywh2xyxy(pxywh)
- pxyxys.append(pxyxy)
-
- pxyxys = torch.cat(pxyxys, dim=0)
- if pxyxys.shape[0] == 0:
- continue
- p_obj = torch.cat(p_obj, dim=0)
- p_cls = torch.cat(p_cls, dim=0)
- from_which_layer = torch.cat(from_which_layer, dim=0)
- all_b = torch.cat(all_b, dim=0)
- all_a = torch.cat(all_a, dim=0)
- all_gj = torch.cat(all_gj, dim=0)
- all_gi = torch.cat(all_gi, dim=0)
- all_anch = torch.cat(all_anch, dim=0)
-
- pair_wise_iou = box_iou(txyxy, pxyxys)
-
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
-
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
-
- gt_cls_per_image = (
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
- .float()
- .unsqueeze(1)
- .repeat(1, pxyxys.shape[0], 1)
- )
-
- num_gt = this_target.shape[0]
- cls_preds_ = (
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- )
-
- y = cls_preds_.sqrt_()
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
- ).sum(-1)
- del cls_preds_
-
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_iou_loss
- )
-
- matching_matrix = torch.zeros_like(cost)
-
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1.0
-
- del top_k, dynamic_ks
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
-
- from_which_layer = from_which_layer[fg_mask_inboxes]
- all_b = all_b[fg_mask_inboxes]
- all_a = all_a[fg_mask_inboxes]
- all_gj = all_gj[fg_mask_inboxes]
- all_gi = all_gi[fg_mask_inboxes]
- all_anch = all_anch[fg_mask_inboxes]
-
- this_target = this_target[matched_gt_inds]
-
- for i in range(nl):
- layer_idx = from_which_layer == i
- matching_bs[i].append(all_b[layer_idx])
- matching_as[i].append(all_a[layer_idx])
- matching_gjs[i].append(all_gj[layer_idx])
- matching_gis[i].append(all_gi[layer_idx])
- matching_targets[i].append(this_target[layer_idx])
- matching_anchs[i].append(all_anch[layer_idx])
-
- for i in range(nl):
- if matching_targets[i] != []:
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
- matching_as[i] = torch.cat(matching_as[i], dim=0)
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
- else:
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
-
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
-
- def find_3_positive(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- indices, anch = [], []
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
-
- g = 0.5 # bias
- off = torch.tensor([[0, 0],
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ], device=targets.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors = self.anchors[i]
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain
- if nt:
- # Matches
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- a = t[:, 6].long() # anchor indices
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
- anch.append(anchors[a]) # anchors
-
- return indices, anch
-
-
- class ComputeLossBinOTA:
- # Compute losses
- def __init__(self, model, autobalance=False):
- super(ComputeLossBinOTA, self).__init__()
- device = next(model.parameters()).device # get model device
- h = model.hyp # hyperparameters
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
- #MSEangle = nn.MSELoss().to(device)
-
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
-
- # Focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
- for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count':
- setattr(self, k, getattr(det, k))
-
- #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device)
- wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device)
- #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device)
- self.wh_bin_sigmoid = wh_bin_sigmoid
-
- def __call__(self, p, targets, imgs): # predictions, targets, model
- device = targets.device
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p]
-
-
- # Losses
- for i, pi in enumerate(p): # layer index, layer predictions
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
-
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2
-
- n = b.shape[0] # number of targets
- if n:
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
-
- # Regression
- grid = torch.stack([gi, gj], dim=1)
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
- selected_tbox[:, :2] -= grid
-
- #pxy = ps[:, :2].sigmoid() * 2. - 0.5
- ##pxy = ps[:, :2].sigmoid() * 3. - 1.
- #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
- #pbox = torch.cat((pxy, pwh), 1) # predicted box
-
- #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0])
- #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1])
- w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0])
- h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1])
-
- pw *= anchors[i][..., 0]
- ph *= anchors[i][..., 1]
-
- px = ps[:, 0].sigmoid() * 2. - 0.5
- py = ps[:, 1].sigmoid() * 2. - 0.5
-
- lbox += w_loss + h_loss # + x_loss + y_loss
-
- #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n")
-
- pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box
-
-
-
-
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
- lbox += (1.0 - iou).mean() # iou loss
-
- # Objectness
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
-
- # Classification
- selected_tcls = targets[i][:, 1].long()
- if self.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets
- t[range(n), selected_tcls] = self.cp
- lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- obji = self.BCEobj(pi[..., obj_idx], tobj)
- lobj += obji * self.balance[i] # obj loss
- if self.autobalance:
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
- if self.autobalance:
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
- lbox *= self.hyp['box']
- lobj *= self.hyp['obj']
- lcls *= self.hyp['cls']
- bs = tobj.shape[0] # batch size
-
- loss = lbox + lobj + lcls
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
-
- def build_targets(self, p, targets, imgs):
-
- #indices, anch = self.find_positive(p, targets)
- indices, anch = self.find_3_positive(p, targets)
- #indices, anch = self.find_4_positive(p, targets)
- #indices, anch = self.find_5_positive(p, targets)
- #indices, anch = self.find_9_positive(p, targets)
-
- matching_bs = [[] for pp in p]
- matching_as = [[] for pp in p]
- matching_gjs = [[] for pp in p]
- matching_gis = [[] for pp in p]
- matching_targets = [[] for pp in p]
- matching_anchs = [[] for pp in p]
-
- nl = len(p)
-
- for batch_idx in range(p[0].shape[0]):
-
- b_idx = targets[:, 0]==batch_idx
- this_target = targets[b_idx]
- if this_target.shape[0] == 0:
- continue
-
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
- txyxy = xywh2xyxy(txywh)
-
- pxyxys = []
- p_cls = []
- p_obj = []
- from_which_layer = []
- all_b = []
- all_a = []
- all_gj = []
- all_gi = []
- all_anch = []
-
- for i, pi in enumerate(p):
-
- obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2
-
- b, a, gj, gi = indices[i]
- idx = (b == batch_idx)
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
- all_b.append(b)
- all_a.append(a)
- all_gj.append(gj)
- all_gi.append(gi)
- all_anch.append(anch[i][idx])
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
-
- fg_pred = pi[b, a, gj, gi]
- p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)])
- p_cls.append(fg_pred[:, (obj_idx+1):])
-
- grid = torch.stack([gi, gj], dim=1)
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
- #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
- pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i]
- ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i]
-
- pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1)
- pxyxy = xywh2xyxy(pxywh)
- pxyxys.append(pxyxy)
-
- pxyxys = torch.cat(pxyxys, dim=0)
- if pxyxys.shape[0] == 0:
- continue
- p_obj = torch.cat(p_obj, dim=0)
- p_cls = torch.cat(p_cls, dim=0)
- from_which_layer = torch.cat(from_which_layer, dim=0)
- all_b = torch.cat(all_b, dim=0)
- all_a = torch.cat(all_a, dim=0)
- all_gj = torch.cat(all_gj, dim=0)
- all_gi = torch.cat(all_gi, dim=0)
- all_anch = torch.cat(all_anch, dim=0)
-
- pair_wise_iou = box_iou(txyxy, pxyxys)
-
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
-
- top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
-
- gt_cls_per_image = (
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
- .float()
- .unsqueeze(1)
- .repeat(1, pxyxys.shape[0], 1)
- )
-
- num_gt = this_target.shape[0]
- cls_preds_ = (
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- )
-
- y = cls_preds_.sqrt_()
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
- ).sum(-1)
- del cls_preds_
-
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_iou_loss
- )
-
- matching_matrix = torch.zeros_like(cost)
-
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1.0
-
- del top_k, dynamic_ks
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
-
- from_which_layer = from_which_layer[fg_mask_inboxes]
- all_b = all_b[fg_mask_inboxes]
- all_a = all_a[fg_mask_inboxes]
- all_gj = all_gj[fg_mask_inboxes]
- all_gi = all_gi[fg_mask_inboxes]
- all_anch = all_anch[fg_mask_inboxes]
-
- this_target = this_target[matched_gt_inds]
-
- for i in range(nl):
- layer_idx = from_which_layer == i
- matching_bs[i].append(all_b[layer_idx])
- matching_as[i].append(all_a[layer_idx])
- matching_gjs[i].append(all_gj[layer_idx])
- matching_gis[i].append(all_gi[layer_idx])
- matching_targets[i].append(this_target[layer_idx])
- matching_anchs[i].append(all_anch[layer_idx])
-
- for i in range(nl):
- if matching_targets[i] != []:
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
- matching_as[i] = torch.cat(matching_as[i], dim=0)
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
- else:
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
-
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
-
- def find_3_positive(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- indices, anch = [], []
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
-
- g = 0.5 # bias
- off = torch.tensor([[0, 0],
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ], device=targets.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors = self.anchors[i]
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain
- if nt:
- # Matches
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- a = t[:, 6].long() # anchor indices
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
- anch.append(anchors[a]) # anchors
-
- return indices, anch
-
-
- class ComputeLossAuxOTA:
- # Compute losses
- def __init__(self, model, autobalance=False):
- super(ComputeLossAuxOTA, self).__init__()
- device = next(model.parameters()).device # get model device
- h = model.hyp # hyperparameters
-
- # Define criteria
- BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
- BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
-
- # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
- self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
-
- # Focal loss
- g = h['fl_gamma'] # focal loss gamma
- if g > 0:
- BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
-
- det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
- self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
- self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
- self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
- for k in 'na', 'nc', 'nl', 'anchors', 'stride':
- setattr(self, k, getattr(det, k))
-
- def __call__(self, p, targets, imgs): # predictions, targets, model
- device = targets.device
- lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
- bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs)
- bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs)
- pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
- pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]]
-
-
- # Losses
- for i in range(self.nl): # layer index, layer predictions
- pi = p[i]
- pi_aux = p[i+self.nl]
- b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx
- b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx
- tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
- tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj
-
- n = b.shape[0] # number of targets
- if n:
- ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
-
- # Regression
- grid = torch.stack([gi, gj], dim=1)
- pxy = ps[:, :2].sigmoid() * 2. - 0.5
- pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
- pbox = torch.cat((pxy, pwh), 1) # predicted box
- selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
- selected_tbox[:, :2] -= grid
- iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
- lbox += (1.0 - iou).mean() # iou loss
-
- # Objectness
- tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
-
- # Classification
- selected_tcls = targets[i][:, 1].long()
- if self.nc > 1: # cls loss (only if multiple classes)
- t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
- t[range(n), selected_tcls] = self.cp
- lcls += self.BCEcls(ps[:, 5:], t) # BCE
-
- # Append targets to text file
- # with open('targets.txt', 'a') as file:
- # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
-
- n_aux = b_aux.shape[0] # number of targets
- if n_aux:
- ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets
- grid_aux = torch.stack([gi_aux, gj_aux], dim=1)
- pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5
- #pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1.
- pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i]
- pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box
- selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i]
- selected_tbox_aux[:, :2] -= grid_aux
- iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target)
- lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss
-
- # Objectness
- tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio
-
- # Classification
- selected_tcls_aux = targets_aux[i][:, 1].long()
- if self.nc > 1: # cls loss (only if multiple classes)
- t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets
- t_aux[range(n_aux), selected_tcls_aux] = self.cp
- lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE
-
- obji = self.BCEobj(pi[..., 4], tobj)
- obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux)
- lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss
- if self.autobalance:
- self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
-
- if self.autobalance:
- self.balance = [x / self.balance[self.ssi] for x in self.balance]
- lbox *= self.hyp['box']
- lobj *= self.hyp['obj']
- lcls *= self.hyp['cls']
- bs = tobj.shape[0] # batch size
-
- loss = lbox + lobj + lcls
- return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
-
- def build_targets(self, p, targets, imgs):
-
- indices, anch = self.find_3_positive(p, targets)
-
- matching_bs = [[] for pp in p]
- matching_as = [[] for pp in p]
- matching_gjs = [[] for pp in p]
- matching_gis = [[] for pp in p]
- matching_targets = [[] for pp in p]
- matching_anchs = [[] for pp in p]
-
- nl = len(p)
-
- for batch_idx in range(p[0].shape[0]):
-
- b_idx = targets[:, 0]==batch_idx
- this_target = targets[b_idx]
- if this_target.shape[0] == 0:
- continue
-
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
- txyxy = xywh2xyxy(txywh)
-
- pxyxys = []
- p_cls = []
- p_obj = []
- from_which_layer = []
- all_b = []
- all_a = []
- all_gj = []
- all_gi = []
- all_anch = []
-
- for i, pi in enumerate(p):
-
- b, a, gj, gi = indices[i]
- idx = (b == batch_idx)
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
- all_b.append(b)
- all_a.append(a)
- all_gj.append(gj)
- all_gi.append(gi)
- all_anch.append(anch[i][idx])
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
-
- fg_pred = pi[b, a, gj, gi]
- p_obj.append(fg_pred[:, 4:5])
- p_cls.append(fg_pred[:, 5:])
-
- grid = torch.stack([gi, gj], dim=1)
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
- pxywh = torch.cat([pxy, pwh], dim=-1)
- pxyxy = xywh2xyxy(pxywh)
- pxyxys.append(pxyxy)
-
- pxyxys = torch.cat(pxyxys, dim=0)
- if pxyxys.shape[0] == 0:
- continue
- p_obj = torch.cat(p_obj, dim=0)
- p_cls = torch.cat(p_cls, dim=0)
- from_which_layer = torch.cat(from_which_layer, dim=0)
- all_b = torch.cat(all_b, dim=0)
- all_a = torch.cat(all_a, dim=0)
- all_gj = torch.cat(all_gj, dim=0)
- all_gi = torch.cat(all_gi, dim=0)
- all_anch = torch.cat(all_anch, dim=0)
-
- pair_wise_iou = box_iou(txyxy, pxyxys)
-
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
-
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
-
- gt_cls_per_image = (
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
- .float()
- .unsqueeze(1)
- .repeat(1, pxyxys.shape[0], 1)
- )
-
- num_gt = this_target.shape[0]
- cls_preds_ = (
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- )
-
- y = cls_preds_.sqrt_()
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
- ).sum(-1)
- del cls_preds_
-
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_iou_loss
- )
-
- matching_matrix = torch.zeros_like(cost)
-
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1.0
-
- del top_k, dynamic_ks
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
-
- from_which_layer = from_which_layer[fg_mask_inboxes]
- all_b = all_b[fg_mask_inboxes]
- all_a = all_a[fg_mask_inboxes]
- all_gj = all_gj[fg_mask_inboxes]
- all_gi = all_gi[fg_mask_inboxes]
- all_anch = all_anch[fg_mask_inboxes]
-
- this_target = this_target[matched_gt_inds]
-
- for i in range(nl):
- layer_idx = from_which_layer == i
- matching_bs[i].append(all_b[layer_idx])
- matching_as[i].append(all_a[layer_idx])
- matching_gjs[i].append(all_gj[layer_idx])
- matching_gis[i].append(all_gi[layer_idx])
- matching_targets[i].append(this_target[layer_idx])
- matching_anchs[i].append(all_anch[layer_idx])
-
- for i in range(nl):
- if matching_targets[i] != []:
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
- matching_as[i] = torch.cat(matching_as[i], dim=0)
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
- else:
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
-
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
-
- def build_targets2(self, p, targets, imgs):
-
- indices, anch = self.find_5_positive(p, targets)
-
- matching_bs = [[] for pp in p]
- matching_as = [[] for pp in p]
- matching_gjs = [[] for pp in p]
- matching_gis = [[] for pp in p]
- matching_targets = [[] for pp in p]
- matching_anchs = [[] for pp in p]
-
- nl = len(p)
-
- for batch_idx in range(p[0].shape[0]):
-
- b_idx = targets[:, 0]==batch_idx
- this_target = targets[b_idx]
- if this_target.shape[0] == 0:
- continue
-
- txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
- txyxy = xywh2xyxy(txywh)
-
- pxyxys = []
- p_cls = []
- p_obj = []
- from_which_layer = []
- all_b = []
- all_a = []
- all_gj = []
- all_gi = []
- all_anch = []
-
- for i, pi in enumerate(p):
-
- b, a, gj, gi = indices[i]
- idx = (b == batch_idx)
- b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]
- all_b.append(b)
- all_a.append(a)
- all_gj.append(gj)
- all_gi.append(gi)
- all_anch.append(anch[i][idx])
- from_which_layer.append(torch.ones(size=(len(b),)) * i)
-
- fg_pred = pi[b, a, gj, gi]
- p_obj.append(fg_pred[:, 4:5])
- p_cls.append(fg_pred[:, 5:])
-
- grid = torch.stack([gi, gj], dim=1)
- pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
- #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
- pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
- pxywh = torch.cat([pxy, pwh], dim=-1)
- pxyxy = xywh2xyxy(pxywh)
- pxyxys.append(pxyxy)
-
- pxyxys = torch.cat(pxyxys, dim=0)
- if pxyxys.shape[0] == 0:
- continue
- p_obj = torch.cat(p_obj, dim=0)
- p_cls = torch.cat(p_cls, dim=0)
- from_which_layer = torch.cat(from_which_layer, dim=0)
- all_b = torch.cat(all_b, dim=0)
- all_a = torch.cat(all_a, dim=0)
- all_gj = torch.cat(all_gj, dim=0)
- all_gi = torch.cat(all_gi, dim=0)
- all_anch = torch.cat(all_anch, dim=0)
-
- pair_wise_iou = box_iou(txyxy, pxyxys)
-
- pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)
-
- top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1)
- dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)
-
- gt_cls_per_image = (
- F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
- .float()
- .unsqueeze(1)
- .repeat(1, pxyxys.shape[0], 1)
- )
-
- num_gt = this_target.shape[0]
- cls_preds_ = (
- p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- )
-
- y = cls_preds_.sqrt_()
- pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
- torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
- ).sum(-1)
- del cls_preds_
-
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_iou_loss
- )
-
- matching_matrix = torch.zeros_like(cost)
-
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1.0
-
- del top_k, dynamic_ks
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
-
- from_which_layer = from_which_layer[fg_mask_inboxes]
- all_b = all_b[fg_mask_inboxes]
- all_a = all_a[fg_mask_inboxes]
- all_gj = all_gj[fg_mask_inboxes]
- all_gi = all_gi[fg_mask_inboxes]
- all_anch = all_anch[fg_mask_inboxes]
-
- this_target = this_target[matched_gt_inds]
-
- for i in range(nl):
- layer_idx = from_which_layer == i
- matching_bs[i].append(all_b[layer_idx])
- matching_as[i].append(all_a[layer_idx])
- matching_gjs[i].append(all_gj[layer_idx])
- matching_gis[i].append(all_gi[layer_idx])
- matching_targets[i].append(this_target[layer_idx])
- matching_anchs[i].append(all_anch[layer_idx])
-
- for i in range(nl):
- if matching_targets[i] != []:
- matching_bs[i] = torch.cat(matching_bs[i], dim=0)
- matching_as[i] = torch.cat(matching_as[i], dim=0)
- matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
- matching_gis[i] = torch.cat(matching_gis[i], dim=0)
- matching_targets[i] = torch.cat(matching_targets[i], dim=0)
- matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
- else:
- matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
- matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
-
- return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs
-
- def find_5_positive(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- indices, anch = [], []
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
-
- g = 1.0 # bias
- off = torch.tensor([[0, 0],
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ], device=targets.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors = self.anchors[i]
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain
- if nt:
- # Matches
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- a = t[:, 6].long() # anchor indices
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
- anch.append(anchors[a]) # anchors
-
- return indices, anch
-
- def find_3_positive(self, p, targets):
- # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
- na, nt = self.na, targets.shape[0] # number of anchors, targets
- indices, anch = [], []
- gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain
- ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
- targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
-
- g = 0.5 # bias
- off = torch.tensor([[0, 0],
- [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
- # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
- ], device=targets.device).float() * g # offsets
-
- for i in range(self.nl):
- anchors = self.anchors[i]
- gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
-
- # Match targets to anchors
- t = targets * gain
- if nt:
- # Matches
- r = t[:, :, 4:6] / anchors[:, None] # wh ratio
- j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
- # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
- t = t[j] # filter
-
- # Offsets
- gxy = t[:, 2:4] # grid xy
- gxi = gain[[2, 3]] - gxy # inverse
- j, k = ((gxy % 1. < g) & (gxy > 1.)).T
- l, m = ((gxi % 1. < g) & (gxi > 1.)).T
- j = torch.stack((torch.ones_like(j), j, k, l, m))
- t = t.repeat((5, 1, 1))[j]
- offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
- else:
- t = targets[0]
- offsets = 0
-
- # Define
- b, c = t[:, :2].long().T # image, class
- gxy = t[:, 2:4] # grid xy
- gwh = t[:, 4:6] # grid wh
- gij = (gxy - offsets).long()
- gi, gj = gij.T # grid xy indices
-
- # Append
- a = t[:, 6].long() # anchor indices
- indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
- anch.append(anchors[a]) # anchors
-
- return indices, anch
|