{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.2.0\n", "sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)\n", "matplotlib 3.3.4\n", "numpy 1.19.5\n", "pandas 1.1.5\n", "sklearn 0.24.2\n", "tensorflow 2.2.0\n", "tensorflow.keras 2.3.0-tf\n" ] } ], "source": [ "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", "import sklearn\n", "import pandas as pd\n", "import os\n", "import sys\n", "import time\n", "import tensorflow as tf\n", "\n", "from tensorflow import keras\n", "\n", "print(tf.__version__)\n", "print(sys.version_info)\n", "for module in mpl, np, pd, sklearn, tf, keras:\n", " print(module.__name__, module.__version__)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[1. 2. 3.]\n", " [4. 5. 6.]], shape=(2, 3), dtype=float32)\n", "--------------------------------------------------\n", "tf.Tensor(\n", "[[2. 3.]\n", " [5. 6.]], shape=(2, 2), dtype=float32)\n", "--------------------------------------------------\n", "tf.Tensor([2. 5.], shape=(2,), dtype=float32)\n", "--------------------------------------------------\n" ] } ], "source": [ "# constant是常量张量\n", "t = tf.constant([[1., 2., 3.], [4., 5.,6.]])\n", "\n", "# index\n", "#2.0能够直接获取值时因为execution默认打开的\n", "print(t)\n", "print('-'*50)\n", "print(t[:, 1:])\n", "print('-'*50)\n", "print(t[..., 1])\n", "print('-'*50)\n", "# t.assign(1)对常量不能进行再次assign设置\n", "type(t.numpy()) #转为ndarray\n", "q=t.numpy()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t1= tf.constant(q) #把ndarray变为张量\n", "t1" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[11. 12. 13.]\n", " [14. 15. 16.]], shape=(2, 3), dtype=float32)\n", "tf.Tensor(\n", "[[1. 2. 3.]\n", " [4. 5. 6.]], shape=(2, 3), dtype=float32)\n", "tf.Tensor(\n", "[[ 1. 4. 9.]\n", " [16. 25. 36.]], shape=(2, 3), dtype=float32)\n", "tf.Tensor(\n", "[[1. 2. 3.]\n", " [4. 5. 6.]], shape=(2, 3), dtype=float32)\n", "tf.Tensor(\n", "[[1. 4.]\n", " [2. 5.]\n", " [3. 6.]], shape=(3, 2), dtype=float32)\n", "tf.Tensor(\n", "[[14. 32.]\n", " [32. 77.]], shape=(2, 2), dtype=float32)\n" ] } ], "source": [ "# ops 使用tf本身的math接口对Tensor进行计算\n", "print(t+10)\n", "print(t)\n", "print(tf.square(t))\n", "print(t)\n", "#矩阵乘以自己的转置\n", "print(tf.transpose(t))\n", "print(t @ tf.transpose(t)) #@是矩阵乘法,和*不一致" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[1. 1.4142135 1.7320508]\n", " [2. 2.236068 2.4494898]], shape=(2, 3), dtype=float32)\n", "--------------------------------------------------\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(tf.sqrt(t))\n", "print('-'*50)\n", "# tf.math.sqrt(t)\n", "tf.math.log(t) #必须加math" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1. 2. 3.]\n", " [4. 5. 6.]]\n", "[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]\n", "\n", "[[ 1. 4. 9.]\n", " [16. 25. 36.]]\n", "tf.Tensor(\n", "[[1. 2. 3.]\n", " [4. 5. 6.]], shape=(2, 3), dtype=float64)\n" ] } ], "source": [ "# numpy conversion\n", "print(t.numpy()) #可以直接通过numpy取出来\n", "print(t.numpy().tolist())\n", "print(type(t.numpy()))\n", "print(np.square(t)) #直接求平方\n", "np_t = np.array([[1., 2., 3.], [4., 5., 6.]])\n", "print(tf.constant(np_t)) #转换为tensor" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(2.718, shape=(), dtype=float32)\n", "2.718\n", "()\n" ] } ], "source": [ "# Scalars 就是标量,只有一个数值的张量,称为标量\n", "t = tf.constant(2.718)\n", "print(t)\n", "print(t.numpy())\n", "print(t.shape) #维数" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(b'cafe', shape=(), dtype=string)\n", "tf.Tensor(4, shape=(), dtype=int32)\n", "tf.Tensor(4, shape=(), dtype=int32)\n", "tf.Tensor([ 99 97 102 101], shape=(4,), dtype=int32)\n" ] } ], "source": [ "# strings\n", "t = tf.constant(\"cafe\")\n", "print(t)\n", "print(tf.strings.length(t))\n", "print(tf.strings.length(t, unit=\"UTF8_CHAR\"))\n", "print(tf.strings.unicode_decode(t, \"UTF8\"))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor([4 6 2], shape=(3,), dtype=int32)\n", "tf.Tensor([4 6 6], shape=(3,), dtype=int32)\n", "\n" ] } ], "source": [ "# string array\n", "t = tf.constant([\"cafe\", \"coffee\", \"咖啡\"])\n", "#自动求出数组中每一个字符的长度,如果不加unit=\"UTF8_CHAR\",得到的是实际字节存储的长度\n", "print(tf.strings.length(t, unit=\"UTF8_CHAR\")) \n", "print(tf.strings.length(t, unit=\"BYTE\")) \n", "r = tf.strings.unicode_decode(t, \"UTF8\")\n", "# https://tool.chinaz.com/tools/unicode.aspx 汉字转的是unicode编码\n", "print(r)\n", "# RaggedTensor 是指形状分布不固定的(行元素个数不相等)\n", "# Tensor,2.0新增" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "(4, None)\n", "tf.Tensor([21 22 23], shape=(3,), dtype=int32)\n", "\n" ] } ], "source": [ "# ragged tensor\n", "r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])\n", "\n", "# index op\n", "print(r)\n", "print(r.shape)\n", "print(r[1])\n", "#取一行也是ragged tensor\n", "print(r[1:3])\n", "# print(r[:,1])#不能取列索引" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n" ] } ], "source": [ "# ops on ragged tensor\n", "r2 = tf.ragged.constant([[51, 52],[], [], [71]])\n", "print(tf.concat([r, r2], axis = 0))\n", "print(tf.concat([r, r2], axis = 1)) #行数不相等,不可以拼\n", "#是否可以把上面的axis改为1" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "#按轴1进行合并时,行数要一致,行数相等,可以拼\n", "r3 = tf.ragged.constant([[13, 14], [15], [41], [42, 43]])\n", "print(tf.concat([r, r3], axis = 1))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[11 12 0]\n", " [21 22 23]\n", " [ 0 0 0]\n", " [41 0 0]], shape=(4, 3), dtype=int32)\n" ] } ], "source": [ "print(r.to_tensor()) #各种深度学习模型必须输入一个tensor\n", "#空闲的补0,只能往后面补" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SparseTensor(indices=tf.Tensor(\n", "[[0 1]\n", " [1 0]\n", " [2 3]\n", " [3 2]], shape=(4, 2), dtype=int64), values=tf.Tensor([1. 2. 3. 5.], shape=(4,), dtype=float32), dense_shape=tf.Tensor([4 4], shape=(2,), dtype=int64))\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# sparse tensor 可以往前面补零,sparse tensor从第一行依次往下填位置\n", "#sparese tensor存储节省内存空间,磁盘空间\n", "s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3],[3,2]], #位置\n", " values = [1., 2., 3.,5], #值\n", " dense_shape = [4, 4]) #维数\n", "print(s)\n", "tt=tf.sparse.to_dense(s)\n", "tt" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SparseTensor(indices=tf.Tensor(\n", "[[0 1]\n", " [1 0]\n", " [2 3]\n", " [3 2]], shape=(4, 2), dtype=int64), values=tf.Tensor([ 2. 4. 6. 10.], shape=(4,), dtype=float32), dense_shape=tf.Tensor([4 4], shape=(2,), dtype=int64))\n", "unsupported operand type(s) for +: 'SparseTensor' and 'int'\n", "tf.Tensor(\n", "[[ 30. 40.]\n", " [ 20. 40.]\n", " [210. 240.]\n", " [250. 300.]], shape=(4, 2), dtype=float32)\n" ] } ], "source": [ "# ops on sparse tensors\n", "\n", "s2 = s * 2.0\n", "print(s2)\n", "\n", "#不支持加法\n", "try:\n", " s3 = s + 1\n", "except TypeError as ex:\n", " print(ex)\n", "\n", "s4 = tf.constant([[10., 20.],\n", " [30., 40.],\n", " [50., 60.],\n", " [70., 80.]])\n", "# tf.sparse.to_dense(s)@s4\n", "print(tf.sparse.sparse_dense_matmul(s, s4)) #稀疏Tensor和Tensor想乘" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SparseTensor(indices=tf.Tensor(\n", "[[0 2]\n", " [2 3]\n", " [0 1]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))\n", "SparseTensor(indices=tf.Tensor(\n", "[[0 1]\n", " [0 2]\n", " [2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([3. 1. 2.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))\n", "tf.Tensor(\n", "[[0. 3. 1. 0.]\n", " [0. 0. 0. 0.]\n", " [0. 0. 0. 2.]], shape=(3, 4), dtype=float32)\n" ] } ], "source": [ "# sparse tensor\n", "s5 = tf.SparseTensor(indices = [[0, 2], [2, 3], [0, 1]],\n", " values = [1., 2., 3.],\n", " dense_shape = [3, 4])\n", "# print(tf.sparse.to_dense(s5)) #sparse无顺序时,不能转为tensor,会报错\n", "print(s5)\n", "s6 = tf.sparse.reorder(s5)\n", "print(s6)\n", "print(tf.sparse.to_dense(s6))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "tf.Tensor(\n", "[[1. 2. 3.]\n", " [4. 5. 6.]], shape=(2, 3), dtype=float32)\n", "--------------------------------------------------\n", "[[1. 2. 3.]\n", " [4. 5. 6.]]\n" ] } ], "source": [ "# Variables\n", "v = tf.Variable([[1., 2., 3.], [4., 5.,6.]])\n", "print(v)\n", "print(v.value())\n", "print('-'*50)\n", "print(v.numpy())" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "140353908649208\n", "140353908649208\n", "[[ 2. 4. 6.]\n", " [ 8. 10. 12.]]\n", "--------------------------------------------------\n", "[[ 2. 42. 6.]\n", " [ 8. 10. 12.]]\n", "--------------------------------------------------\n", "[[ 2. 42. 6.]\n", " [ 7. 8. 9.]]\n", "140353908649208\n" ] } ], "source": [ "# 修改变量时要用assign,改变tensor内某个值,空间没有发生变化,效率高\n", "# assign value\n", "print(id(v))\n", "v.assign(2*v)\n", "print(id(v))\n", "print(v.numpy())\n", "print('-'*50)\n", "v[0, 1].assign(42) #取某个元素修改\n", "print(v.numpy())\n", "print('-'*50)\n", "v[1].assign([7., 8., 9.]) #取某一行修改\n", "print(v.numpy())\n", "print(id(v))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'ResourceVariable' object does not support item assignment\n" ] } ], "source": [ "try:\n", " v[1] = [7., 8., 9.]\n", "except TypeError as ex:\n", " print(ex)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(\n", "[[ 4. 84. 12.]\n", " [14. 16. 18.]], shape=(2, 3), dtype=float32)\n", "140353905381784\n", "\n" ] } ], "source": [ "v=2*v\n", "print(v)\n", "print(id(v))\n", "print(type(v))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = tf.constant([[1., 1.], [2., 2.]])\n", "tf.reduce_mean(x,axis=1)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }