| @@ -0,0 +1,853 @@ | |||||
| { | |||||
| "cells": [ | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 1, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "2.2.0\n", | |||||
| "sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)\n", | |||||
| "matplotlib 3.3.4\n", | |||||
| "numpy 1.19.5\n", | |||||
| "pandas 1.1.5\n", | |||||
| "sklearn 0.24.2\n", | |||||
| "tensorflow 2.2.0\n", | |||||
| "tensorflow.keras 2.3.0-tf\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "import matplotlib as mpl\n", | |||||
| "import matplotlib.pyplot as plt\n", | |||||
| "%matplotlib inline\n", | |||||
| "import numpy as np\n", | |||||
| "import sklearn\n", | |||||
| "import pandas as pd\n", | |||||
| "import os\n", | |||||
| "import sys\n", | |||||
| "import time\n", | |||||
| "import tensorflow as tf\n", | |||||
| "\n", | |||||
| "from tensorflow import keras\n", | |||||
| "\n", | |||||
| "print(tf.__version__)\n", | |||||
| "print(sys.version_info)\n", | |||||
| "for module in mpl, np, pd, sklearn, tf, keras:\n", | |||||
| " print(module.__name__, module.__version__)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 2, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "from sklearn.datasets import fetch_california_housing\n", | |||||
| "\n", | |||||
| "housing = fetch_california_housing()" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 3, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "(11610, 8) (11610,)\n", | |||||
| "(3870, 8) (3870,)\n", | |||||
| "(5160, 8) (5160,)\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "from sklearn.model_selection import train_test_split\n", | |||||
| "\n", | |||||
| "x_train_all, x_test, y_train_all, y_test = train_test_split(\n", | |||||
| " housing.data, housing.target, random_state = 7)\n", | |||||
| "x_train, x_valid, y_train, y_valid = train_test_split(\n", | |||||
| " x_train_all, y_train_all, random_state = 11)\n", | |||||
| "print(x_train.shape, y_train.shape)\n", | |||||
| "print(x_valid.shape, y_valid.shape)\n", | |||||
| "print(x_test.shape, y_test.shape)\n" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 4, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "from sklearn.preprocessing import StandardScaler\n", | |||||
| "\n", | |||||
| "scaler = StandardScaler()\n", | |||||
| "x_train_scaled = scaler.fit_transform(x_train)\n", | |||||
| "x_valid_scaled = scaler.transform(x_valid)\n", | |||||
| "x_test_scaled = scaler.transform(x_test)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 6, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "!rm -rf generate_csv" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 5, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "tf01-dataset_basic_api.ipynb tf03-tfrecord_basic_api.ipynb\r\n", | |||||
| "tf02_data_generate_csv.ipynb tf04_data_generate_tfrecord.ipynb\r\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "!ls" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 7, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "numpy.ndarray" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 7, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "type(x_train_scaled)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 8, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "['.ipynb_checkpoints',\n", | |||||
| " 'tf02_data_generate_csv.ipynb',\n", | |||||
| " 'tf04_data_generate_tfrecord.ipynb',\n", | |||||
| " 'tf03-tfrecord_basic_api.ipynb',\n", | |||||
| " 'tf01-dataset_basic_api.ipynb']" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 8, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "os.listdir()" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 14, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "0 [0 1 2 3 4]\n", | |||||
| "1 [5 6 7 8 9]\n", | |||||
| "2 [10 11 12 13 14]\n", | |||||
| "3 [15 16 17 18 19]\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#为了把数据分好\n", | |||||
| "for file_idx, row_indices in enumerate(np.array_split(np.arange(20), 4)):\n", | |||||
| " print(file_idx,row_indices)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 10, | |||||
| "metadata": { | |||||
| "scrolled": true | |||||
| }, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "MedInc,HouseAge,AveRooms,AveBedrms,Population,AveOccup,Latitude,Longitude,MidianHouseValue\n", | |||||
| "--------------------------------------------------\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#下面要把特征工程后的数据存为csv文件\n", | |||||
| "output_dir = \"generate_csv\"\n", | |||||
| "if not os.path.exists(output_dir):\n", | |||||
| " os.mkdir(output_dir)\n", | |||||
| "\n", | |||||
| "#save_to_csv是工作可以直接复用的\n", | |||||
| "def save_to_csv(output_dir, data, name_prefix,\n", | |||||
| " header=None, n_parts=10):\n", | |||||
| " #生成文件名 格式generate_csv/{}_{:02d}.csv\n", | |||||
| " path_format = os.path.join(output_dir, \"{}_{:02d}.csv\") \n", | |||||
| " filenames = []\n", | |||||
| " #把数据分为n_parts部分,写到文件中去\n", | |||||
| " for file_idx, row_indices in enumerate(\n", | |||||
| " np.array_split(np.arange(len(data)), n_parts)):\n", | |||||
| " #print(file_idx,row_indices)\n", | |||||
| " #生成子文件名\n", | |||||
| " part_csv = path_format.format(name_prefix, file_idx)\n", | |||||
| " filenames.append(part_csv) #文件名添加到列表\n", | |||||
| " with open(part_csv, \"w\", encoding=\"utf-8\") as f:\n", | |||||
| " #先写头部\n", | |||||
| " if header is not None:\n", | |||||
| " f.write(header + \"\\n\")\n", | |||||
| " for row_index in row_indices:\n", | |||||
| " #把字符串化后的每个字符串用逗号拼接起来\n", | |||||
| " f.write(\",\".join(\n", | |||||
| " [repr(col) for col in data[row_index]]))\n", | |||||
| " f.write('\\n')\n", | |||||
| " return filenames\n", | |||||
| "#np.c_把x和y合并起来,按轴1合并\n", | |||||
| "train_data = np.c_[x_train_scaled, y_train]\n", | |||||
| "valid_data = np.c_[x_valid_scaled, y_valid]\n", | |||||
| "test_data = np.c_[x_test_scaled, y_test]\n", | |||||
| "#头部,特征,也有目标\n", | |||||
| "header_cols = housing.feature_names + [\"MidianHouseValue\"]\n", | |||||
| "#把列表变为字符串\n", | |||||
| "header_str = \",\".join(header_cols)\n", | |||||
| "print(header_str)\n", | |||||
| "print('-'*50)\n", | |||||
| "train_filenames = save_to_csv(output_dir, train_data, \"train\",\n", | |||||
| " header_str, n_parts=20)\n", | |||||
| "valid_filenames = save_to_csv(output_dir, valid_data, \"valid\",\n", | |||||
| " header_str, n_parts=10)\n", | |||||
| "test_filenames = save_to_csv(output_dir, test_data, \"test\",\n", | |||||
| " header_str, n_parts=10)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 12, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "temp_array=np.array([[1,2,3],[4,5,6]])\n", | |||||
| "np.savetxt(\"temp.csv\",temp_array) #savetxt会自动将整型数或者浮点数转为字符串存储" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 13, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000000e+00\r\n", | |||||
| "4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000000e+00\r\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "!cat temp.csv" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 14, | |||||
| "metadata": { | |||||
| "collapsed": true | |||||
| }, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "['generate_csv/train_00.csv', 'generate_csv/train_01.csv', 'generate_csv/train_02.csv', 'generate_csv/train_03.csv', 'generate_csv/train_04.csv', 'generate_csv/train_05.csv', 'generate_csv/train_06.csv', 'generate_csv/train_07.csv', 'generate_csv/train_08.csv', 'generate_csv/train_09.csv', 'generate_csv/train_10.csv', 'generate_csv/train_11.csv', 'generate_csv/train_12.csv', 'generate_csv/train_13.csv', 'generate_csv/train_14.csv', 'generate_csv/train_15.csv', 'generate_csv/train_16.csv', 'generate_csv/train_17.csv', 'generate_csv/train_18.csv', 'generate_csv/train_19.csv']\n", | |||||
| "train filenames:\n", | |||||
| "['generate_csv/train_00.csv',\n", | |||||
| " 'generate_csv/train_01.csv',\n", | |||||
| " 'generate_csv/train_02.csv',\n", | |||||
| " 'generate_csv/train_03.csv',\n", | |||||
| " 'generate_csv/train_04.csv',\n", | |||||
| " 'generate_csv/train_05.csv',\n", | |||||
| " 'generate_csv/train_06.csv',\n", | |||||
| " 'generate_csv/train_07.csv',\n", | |||||
| " 'generate_csv/train_08.csv',\n", | |||||
| " 'generate_csv/train_09.csv',\n", | |||||
| " 'generate_csv/train_10.csv',\n", | |||||
| " 'generate_csv/train_11.csv',\n", | |||||
| " 'generate_csv/train_12.csv',\n", | |||||
| " 'generate_csv/train_13.csv',\n", | |||||
| " 'generate_csv/train_14.csv',\n", | |||||
| " 'generate_csv/train_15.csv',\n", | |||||
| " 'generate_csv/train_16.csv',\n", | |||||
| " 'generate_csv/train_17.csv',\n", | |||||
| " 'generate_csv/train_18.csv',\n", | |||||
| " 'generate_csv/train_19.csv']\n", | |||||
| "valid filenames:\n", | |||||
| "['generate_csv/valid_00.csv',\n", | |||||
| " 'generate_csv/valid_01.csv',\n", | |||||
| " 'generate_csv/valid_02.csv',\n", | |||||
| " 'generate_csv/valid_03.csv',\n", | |||||
| " 'generate_csv/valid_04.csv',\n", | |||||
| " 'generate_csv/valid_05.csv',\n", | |||||
| " 'generate_csv/valid_06.csv',\n", | |||||
| " 'generate_csv/valid_07.csv',\n", | |||||
| " 'generate_csv/valid_08.csv',\n", | |||||
| " 'generate_csv/valid_09.csv']\n", | |||||
| "test filenames:\n", | |||||
| "['generate_csv/test_00.csv',\n", | |||||
| " 'generate_csv/test_01.csv',\n", | |||||
| " 'generate_csv/test_02.csv',\n", | |||||
| " 'generate_csv/test_03.csv',\n", | |||||
| " 'generate_csv/test_04.csv',\n", | |||||
| " 'generate_csv/test_05.csv',\n", | |||||
| " 'generate_csv/test_06.csv',\n", | |||||
| " 'generate_csv/test_07.csv',\n", | |||||
| " 'generate_csv/test_08.csv',\n", | |||||
| " 'generate_csv/test_09.csv']\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#看下生成文件的文件名\n", | |||||
| "print(train_filenames)\n", | |||||
| "import pprint #为了打印美观性\n", | |||||
| "print(\"train filenames:\")\n", | |||||
| "pprint.pprint(train_filenames)\n", | |||||
| "print(\"valid filenames:\")\n", | |||||
| "pprint.pprint(valid_filenames)\n", | |||||
| "print(\"test filenames:\")\n", | |||||
| "pprint.pprint(test_filenames)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 16, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "tf.Tensor(b'generate_csv/train_13.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_01.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_14.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_11.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_12.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_06.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_15.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_10.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_05.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_02.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_00.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_07.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_16.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_09.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_19.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_03.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_04.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_18.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_17.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_08.csv', shape=(), dtype=string)\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "# 1. filename -> dataset\n", | |||||
| "# 2. read file -> dataset -> datasets -> merge\n", | |||||
| "# 3. parse csv\n", | |||||
| "#list_files把文件名搞为一个dataset\n", | |||||
| "# list_files默认行为是按不确定的随机混排顺序返回文件名\n", | |||||
| "filename_dataset = tf.data.Dataset.list_files(train_filenames)\n", | |||||
| "for filename in filename_dataset:\n", | |||||
| " print(filename)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 17, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "tf.Tensor(b'generate_csv/train_00.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_01.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_02.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_03.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_04.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_05.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_06.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_07.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_08.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_09.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_10.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_11.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_12.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_13.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_14.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_15.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_16.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_17.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_18.csv', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'generate_csv/train_19.csv', shape=(), dtype=string)\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "filename_mydataset=tf.data.Dataset.from_tensor_slices(train_filenames)\n", | |||||
| "filename_mydataset=filename_mydataset.repeat(1)\n", | |||||
| "for i in filename_mydataset:\n", | |||||
| " print(i)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": null, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "# 把数据从文件中拿出来" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 24, | |||||
| "metadata": { | |||||
| "scrolled": false | |||||
| }, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "tf.Tensor(b'0.801544314532886,0.27216142415910205,-0.11624392696666119,-0.2023115137272354,-0.5430515742518128,-0.021039615516440048,-0.5897620622908205,-0.08241845654707416,3.226', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.2980728090942217,0.3522616607867429,-0.10920507530549702,-0.25055520947444,-0.034064024638222286,-0.006034004264459185,1.080554840130013,-1.0611381656679573,1.514', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'0.8115083791797953,-0.04823952235146133,0.5187339067174729,-0.029386394873127775,-0.034064024638222286,-0.05081594842905086,-0.7157356834231196,0.9162751241885168,2.147', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.6906143291679195,-0.1283397589791022,7.0201810347470595,5.624287386169439,-0.2663292879200034,-0.03662080416157129,-0.6457503383496215,1.2058962626018372,1.352', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'0.401276648075221,-0.9293421252555106,-0.05333050451405854,-0.1865945262276826,0.6545661895448709,0.026434465728210874,0.9312527706398824,-1.4406417263474771,2.512', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.8757754235423053,1.874166156711919,-0.9487499555702599,-0.09657184824705009,-0.7163432355284542,-0.07790191228558485,0.9825753570271144,-1.4206678547327694,2.75', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'0.15782311132800697,0.43236189741438374,0.3379948076652917,-0.015880306122244434,-0.3733890577139493,-0.05305245634489608,0.8006134598360177,-1.2359095422966828,3.169', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'2.2878417437355094,-1.8905449647872008,0.6607106467795992,-0.14964778023694128,-0.06672632728722275,0.44788055801575993,-0.5337737862320228,0.5667323709310584,3.59', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-1.0591781535672364,1.393564736946074,-0.026331968874673636,-0.11006759528831847,-0.6138198966579805,-0.09695934953589447,0.3247131133362288,-0.037477245413977976,0.672', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.2223565745313433,1.393564736946074,0.02991299565857307,0.0801452044790158,-0.509481985418118,-0.06238599304952824,-0.86503775291325,0.8613469772480595,2.0', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.03058829290446139,-0.9293421252555106,0.2596214817762415,-0.00601274044096368,-0.5004091235711734,-0.030779867916061836,1.5984463936739026,-1.8151518191233238,1.598', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'1.9063832474401923,0.5124621340420246,0.44758280183798754,-0.276721775345798,-0.6310583341671753,-0.07081146722873086,-0.7064043040799849,0.7464972154634646,5.00001', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'-0.9868720801669367,0.832863080552588,-0.18684708416901633,-0.14888949288707784,-0.4532302419670616,-0.11504995754593579,1.6730974284189664,-0.7465496877362412,1.138', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'0.29422955783115173,1.874166156711919,0.004626028663628252,-0.28479278487900694,-0.5602900117610076,-0.1196496378702887,1.3558305307524392,-0.9512818717870428,1.625', shape=(), dtype=string)\n", | |||||
| "tf.Tensor(b'0.7751155655229017,1.874166156711919,0.15645971958808144,-0.18905190538070707,-0.6292437617977863,-0.08791603438866835,-0.7483955111240856,0.5717258388347319,4.851', shape=(), dtype=string)\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#一访问list_files的dataset对象就随机了文件顺序\n", | |||||
| "# for filename in filename_dataset:\n", | |||||
| "# print(filename)\n", | |||||
| "n_readers = 5\n", | |||||
| "dataset = filename_mydataset.interleave(\n", | |||||
| " #前面1行是header\n", | |||||
| "# lambda filename: tf.data.TextLineDataset(filename),\n", | |||||
| " #不带header,把特征名字去掉\n", | |||||
| " lambda filename: tf.data.TextLineDataset(filename).skip(1),\n", | |||||
| " cycle_length = n_readers, #cycle_length和block_length增加获取了数据的随机性\n", | |||||
| " block_length=2\n", | |||||
| ")\n", | |||||
| "for line in dataset.take(15):\n", | |||||
| " print(line)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": null, | |||||
| "metadata": {}, | |||||
| "outputs": [], | |||||
| "source": [ | |||||
| "# 把每一行数据切分为对应类型" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 18, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "[<tf.Tensor: shape=(), dtype=int32, numpy=1>, <tf.Tensor: shape=(), dtype=int32, numpy=2>, <tf.Tensor: shape=(), dtype=float32, numpy=3.0>, <tf.Tensor: shape=(), dtype=string, numpy=b'4'>, <tf.Tensor: shape=(), dtype=float32, numpy=5.0>]\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#parse csv 解析csv,通过decode_csv\n", | |||||
| "# tf.io.decode_csv(str, record_defaults)\n", | |||||
| "\n", | |||||
| "sample_str = '1,2,3,4,5'\n", | |||||
| "record_defaults = [\n", | |||||
| " tf.constant(0, dtype=tf.int32),\n", | |||||
| " 0,\n", | |||||
| " np.nan,\n", | |||||
| " \"hello1\",\n", | |||||
| " tf.constant([])#没有固定类型,默认是float32\n", | |||||
| "]\n", | |||||
| "#sample_str数据格式化,按照record_defaults进行处理\n", | |||||
| "parsed_fields = tf.io.decode_csv(sample_str, record_defaults)\n", | |||||
| "print(parsed_fields)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 19, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "[<tf.Tensor: shape=(), dtype=int32, numpy=0>,\n", | |||||
| " <tf.Tensor: shape=(), dtype=int32, numpy=0>,\n", | |||||
| " <tf.Tensor: shape=(), dtype=float32, numpy=nan>,\n", | |||||
| " <tf.Tensor: shape=(), dtype=string, numpy=b'hello1'>,\n", | |||||
| " <tf.Tensor: shape=(), dtype=float32, numpy=1.0>]" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 19, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#我们传一个空的字符串测试\n", | |||||
| "#最后一个为1是可以转换的\n", | |||||
| "try:\n", | |||||
| " parsed_fields = tf.io.decode_csv(',,,,1', record_defaults)\n", | |||||
| "except tf.errors.InvalidArgumentError as ex:\n", | |||||
| " print(ex)\n", | |||||
| "parsed_fields" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 20, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "Expect 5 fields but have 7 in record 0 [Op:DecodeCSV]\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#我们给的值过多的情况\n", | |||||
| "try:\n", | |||||
| " parsed_fields = tf.io.decode_csv('1,2,3,4,5,6,', record_defaults)\n", | |||||
| "except tf.errors.InvalidArgumentError as ex:\n", | |||||
| " print(ex)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 21, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "(<tf.Tensor: shape=(8,), dtype=float32, numpy=\n", | |||||
| " array([-0.9868721 , 0.8328631 , -0.18684709, -0.1488895 , -0.45323023,\n", | |||||
| " -0.11504996, 1.6730974 , -0.74654967], dtype=float32)>,\n", | |||||
| " <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.138], dtype=float32)>)" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 21, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#解析一行\n", | |||||
| "def parse_csv_line(line, n_fields = 9):\n", | |||||
| " #先写一个默认的格式,就是9个nan,如果从csv中读取缺失数据,就会变为nan\n", | |||||
| " defs = [tf.constant(np.nan)] * n_fields\n", | |||||
| " #使用decode_csv解析\n", | |||||
| " parsed_fields = tf.io.decode_csv(line, record_defaults=defs)\n", | |||||
| " #前8个是x,最后一个是y\n", | |||||
| " x = tf.stack(parsed_fields[0:-1])\n", | |||||
| " y = tf.stack(parsed_fields[-1:])\n", | |||||
| " return x, y\n", | |||||
| "\n", | |||||
| "parse_csv_line(b'-0.9868720801669367,0.832863080552588,-0.18684708416901633,-0.14888949288707784,-0.4532302419670616,-0.11504995754593579,1.6730974284189664,-0.7465496877362412,1.138',\n", | |||||
| " n_fields=9)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 22, | |||||
| "metadata": { | |||||
| "collapsed": true | |||||
| }, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "<BatchDataset shapes: ((None, 8), (None, 1)), types: (tf.float32, tf.float32)>\n", | |||||
| "--------------------------------------------------\n", | |||||
| "x:\n", | |||||
| "<tf.Tensor: shape=(4, 8), dtype=float32, numpy=\n", | |||||
| "array([[ 0.15782312, 0.4323619 , 0.3379948 , -0.01588031, -0.37338907,\n", | |||||
| " -0.05305246, 0.80061346, -1.2359096 ],\n", | |||||
| " [-1.0591781 , 1.3935647 , -0.02633197, -0.1100676 , -0.6138199 ,\n", | |||||
| " -0.09695935, 0.3247131 , -0.03747724],\n", | |||||
| " [-0.82195884, 1.8741661 , 0.1821235 , -0.03170019, -0.6011179 ,\n", | |||||
| " -0.14337493, 1.0852206 , -0.8613995 ],\n", | |||||
| " [ 0.63034356, 1.8741661 , -0.06713215, -0.12543367, -0.19737554,\n", | |||||
| " -0.02272263, -0.69240725, 0.72652334]], dtype=float32)>\n", | |||||
| "y:\n", | |||||
| "<tf.Tensor: shape=(4, 1), dtype=float32, numpy=\n", | |||||
| "array([[3.169],\n", | |||||
| " [0.672],\n", | |||||
| " [1.054],\n", | |||||
| " [2.419]], dtype=float32)>\n", | |||||
| "x:\n", | |||||
| "<tf.Tensor: shape=(4, 8), dtype=float32, numpy=\n", | |||||
| "array([[ 0.48530516, -0.8492419 , -0.06530126, -0.02337966, 1.4974351 ,\n", | |||||
| " -0.07790658, -0.90236324, 0.78145146],\n", | |||||
| " [ 2.2878418 , -1.890545 , 0.66071063, -0.14964779, -0.06672633,\n", | |||||
| " 0.44788057, -0.5337738 , 0.56673235],\n", | |||||
| " [-0.22235657, 1.3935647 , 0.029913 , 0.0801452 , -0.50948197,\n", | |||||
| " -0.06238599, -0.86503774, 0.86134696],\n", | |||||
| " [-0.46794146, -0.92934215, 0.11909926, -0.06047011, 0.30344644,\n", | |||||
| " -0.02185189, 1.8737221 , -1.0411643 ]], dtype=float32)>\n", | |||||
| "y:\n", | |||||
| "<tf.Tensor: shape=(4, 1), dtype=float32, numpy=\n", | |||||
| "array([[2.956],\n", | |||||
| " [3.59 ],\n", | |||||
| " [2. ],\n", | |||||
| " [1.012]], dtype=float32)>\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "# 1. filename -> dataset\n", | |||||
| "# 2. read file -> dataset -> datasets -> merge\n", | |||||
| "# 3. parse csv\n", | |||||
| "#完成整个流程\n", | |||||
| "def csv_reader_dataset(filenames, n_readers=5,\n", | |||||
| " batch_size=32, n_parse_threads=5,\n", | |||||
| " shuffle_buffer_size=10000):\n", | |||||
| " #把文件名类别变为dataset tensor\n", | |||||
| " dataset = tf.data.Dataset.list_files(filenames)\n", | |||||
| " #变为repeat dataset可以让读到最后一个样本时,从新去读第一个样本\n", | |||||
| " dataset = dataset.repeat()\n", | |||||
| " dataset = dataset.interleave(\n", | |||||
| " #skip(1)是因为每个文件存了特征名字,target名字\n", | |||||
| " lambda filename: tf.data.TextLineDataset(filename).skip(1),\n", | |||||
| " cycle_length = n_readers\n", | |||||
| " )\n", | |||||
| " dataset.shuffle(shuffle_buffer_size) #对数据进行洗牌,混乱\n", | |||||
| " #map,通过parse_csv_line对数据集进行映射,map只会给函数传递一个参数,这个参数\n", | |||||
| " #就是dataset中的tensor\n", | |||||
| " dataset = dataset.map(parse_csv_line,\n", | |||||
| " num_parallel_calls=n_parse_threads)\n", | |||||
| " dataset = dataset.batch(batch_size)\n", | |||||
| " return dataset\n", | |||||
| "#这里是一个测试,写4是为了大家理解\n", | |||||
| "train_set = csv_reader_dataset(train_filenames, batch_size=4)\n", | |||||
| "print(train_set)\n", | |||||
| "print('-'*50)\n", | |||||
| "i=0\n", | |||||
| "#是csv_reader_dataset处理后的结果,\n", | |||||
| "for x_batch, y_batch in train_set.take(2):\n", | |||||
| "# i=i+1\n", | |||||
| " print(\"x:\")\n", | |||||
| " pprint.pprint(x_batch)\n", | |||||
| " print(\"y:\")\n", | |||||
| " pprint.pprint(y_batch)\n", | |||||
| "# print(i)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 23, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "CPU times: user 137 ms, sys: 40.3 ms, total: 177 ms\n", | |||||
| "Wall time: 160 ms\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "%%time\n", | |||||
| "batch_size = 32\n", | |||||
| "train_set = csv_reader_dataset(train_filenames,\n", | |||||
| " batch_size = batch_size)\n", | |||||
| "valid_set = csv_reader_dataset(valid_filenames,\n", | |||||
| " batch_size = batch_size)\n", | |||||
| "test_set = csv_reader_dataset(test_filenames,\n", | |||||
| " batch_size = batch_size)\n", | |||||
| "\n", | |||||
| "# print(train_set)\n", | |||||
| "# print(valid_set)\n", | |||||
| "# print(test_set)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 24, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "Epoch 1/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 1.1306 - val_loss: 0.9811\n", | |||||
| "Epoch 2/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 2.4388 - val_loss: 0.5692\n", | |||||
| "Epoch 3/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.5545 - val_loss: 0.6181\n", | |||||
| "Epoch 4/100\n", | |||||
| "348/348 [==============================] - 1s 4ms/step - loss: 0.6097 - val_loss: 0.4497\n", | |||||
| "Epoch 5/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.4277 - val_loss: 0.4555\n", | |||||
| "Epoch 6/100\n", | |||||
| "348/348 [==============================] - 1s 4ms/step - loss: 0.3998 - val_loss: 0.3870\n", | |||||
| "Epoch 7/100\n", | |||||
| "348/348 [==============================] - 1s 4ms/step - loss: 0.3889 - val_loss: 0.4119\n", | |||||
| "Epoch 8/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.3831 - val_loss: 0.3941\n", | |||||
| "Epoch 9/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.3870 - val_loss: 0.4068\n", | |||||
| "Epoch 10/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.3689 - val_loss: 0.3801\n", | |||||
| "Epoch 11/100\n", | |||||
| "348/348 [==============================] - 1s 3ms/step - loss: 0.3804 - val_loss: 0.3957\n" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "#我们知道长度为8\n", | |||||
| "model = keras.models.Sequential([\n", | |||||
| " keras.layers.Dense(30, activation='relu',\n", | |||||
| " input_shape=[8]),\n", | |||||
| " keras.layers.Dense(1),\n", | |||||
| "])\n", | |||||
| "model.compile(loss=\"mean_squared_error\", optimizer=\"sgd\")\n", | |||||
| "callbacks = [keras.callbacks.EarlyStopping(\n", | |||||
| " patience=5, min_delta=1e-2)]\n", | |||||
| "\n", | |||||
| "#当是BatchDataset,必须制定steps_per_epoch,validation_steps\n", | |||||
| "history = model.fit(train_set,\n", | |||||
| " validation_data = valid_set,\n", | |||||
| " steps_per_epoch = 11160 // batch_size, #每epoch训练的步数\n", | |||||
| " validation_steps = 3870 // batch_size,\n", | |||||
| " epochs = 100,\n", | |||||
| " callbacks = callbacks)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 25, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "name": "stdout", | |||||
| "output_type": "stream", | |||||
| "text": [ | |||||
| "161/161 [==============================] - 0s 2ms/step - loss: 0.3995\n" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "0.39946985244750977" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 25, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "model.evaluate(test_set, steps = 5160 // batch_size)" | |||||
| ] | |||||
| }, | |||||
| { | |||||
| "cell_type": "code", | |||||
| "execution_count": 37, | |||||
| "metadata": {}, | |||||
| "outputs": [ | |||||
| { | |||||
| "data": { | |||||
| "text/plain": [ | |||||
| "[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 1, 2, 3])>,\n", | |||||
| " <tf.Tensor: shape=(4,), dtype=int64, numpy=array([4, 5, 6, 7])>]" | |||||
| ] | |||||
| }, | |||||
| "execution_count": 37, | |||||
| "metadata": {}, | |||||
| "output_type": "execute_result" | |||||
| } | |||||
| ], | |||||
| "source": [ | |||||
| "dataset = tf.data.Dataset.range(8)\n", | |||||
| "dataset = dataset.batch(4) #把tensor组合到一起,就是分了batch\n", | |||||
| "list(dataset)" | |||||
| ] | |||||
| } | |||||
| ], | |||||
| "metadata": { | |||||
| "kernelspec": { | |||||
| "display_name": "Python 3", | |||||
| "language": "python", | |||||
| "name": "python3" | |||||
| }, | |||||
| "language_info": { | |||||
| "codemirror_mode": { | |||||
| "name": "ipython", | |||||
| "version": 3 | |||||
| }, | |||||
| "file_extension": ".py", | |||||
| "mimetype": "text/x-python", | |||||
| "name": "python", | |||||
| "nbconvert_exporter": "python", | |||||
| "pygments_lexer": "ipython3", | |||||
| "version": "3.6.9" | |||||
| } | |||||
| }, | |||||
| "nbformat": 4, | |||||
| "nbformat_minor": 2 | |||||
| } | |||||