You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test.py 17 kB

3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized, TracedModel
  17. def test(data,
  18. weights=None,
  19. batch_size=32,
  20. imgsz=640,
  21. conf_thres=0.001,
  22. iou_thres=0.6, # for NMS
  23. save_json=False,
  24. single_cls=False,
  25. augment=False,
  26. verbose=False,
  27. model=None,
  28. dataloader=None,
  29. save_dir=Path(''), # for saving images
  30. save_txt=False, # for auto-labelling
  31. save_hybrid=False, # for hybrid auto-labelling
  32. save_conf=False, # save auto-label confidences
  33. plots=True,
  34. wandb_logger=None,
  35. compute_loss=None,
  36. half_precision=True,
  37. trace=False,
  38. is_coco=False):
  39. # Initialize/load model and set device
  40. training = model is not None
  41. if training: # called by train.py
  42. device = next(model.parameters()).device # get model device
  43. else: # called directly
  44. set_logging()
  45. device = select_device(opt.device, batch_size=batch_size)
  46. # Directories
  47. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  48. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  49. # Load model
  50. model = attempt_load(weights, map_location=device) # load FP32 model
  51. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  52. imgsz = check_img_size(imgsz, s=gs) # check img_size
  53. if trace:
  54. model = TracedModel(model, device, opt.img_size)
  55. # Half
  56. half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
  57. if half:
  58. model.half()
  59. # Configure
  60. model.eval()
  61. if isinstance(data, str):
  62. is_coco = data.endswith('coco.yaml')
  63. with open(data) as f:
  64. data = yaml.load(f, Loader=yaml.SafeLoader)
  65. check_dataset(data) # check
  66. nc = 1 if single_cls else int(data['nc']) # number of classes
  67. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  68. niou = iouv.numel()
  69. # Logging
  70. log_imgs = 0
  71. if wandb_logger and wandb_logger.wandb:
  72. log_imgs = min(wandb_logger.log_imgs, 100)
  73. # Dataloader
  74. if not training:
  75. if device.type != 'cpu':
  76. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  77. task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  78. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
  79. prefix=colorstr(f'{task}: '))[0]
  80. seen = 0
  81. confusion_matrix = ConfusionMatrix(nc=nc)
  82. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  83. coco91class = coco80_to_coco91_class()
  84. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  85. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  86. loss = torch.zeros(3, device=device)
  87. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  88. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  89. img = img.to(device, non_blocking=True)
  90. img = img.half() if half else img.float() # uint8 to fp16/32
  91. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  92. targets = targets.to(device)
  93. nb, _, height, width = img.shape # batch size, channels, height, width
  94. with torch.no_grad():
  95. # Run model
  96. t = time_synchronized()
  97. out, train_out = model(img, augment=augment) # inference and training outputs
  98. t0 += time_synchronized() - t
  99. # Compute loss
  100. if compute_loss:
  101. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  102. # Run NMS
  103. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  104. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  105. t = time_synchronized()
  106. out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
  107. t1 += time_synchronized() - t
  108. # Statistics per image
  109. for si, pred in enumerate(out):
  110. labels = targets[targets[:, 0] == si, 1:]
  111. nl = len(labels)
  112. tcls = labels[:, 0].tolist() if nl else [] # target class
  113. path = Path(paths[si])
  114. seen += 1
  115. if len(pred) == 0:
  116. if nl:
  117. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  118. continue
  119. # Predictions
  120. predn = pred.clone()
  121. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  122. # Append to text file
  123. if save_txt:
  124. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  125. for *xyxy, conf, cls in predn.tolist():
  126. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  127. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  128. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  129. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  130. # W&B logging - Media Panel Plots
  131. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  132. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  133. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  134. "class_id": int(cls),
  135. "box_caption": "%s %.3f" % (names[cls], conf),
  136. "scores": {"class_score": conf},
  137. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  138. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  139. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  140. wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
  141. # Append to pycocotools JSON dictionary
  142. if save_json:
  143. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  144. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  145. box = xyxy2xywh(predn[:, :4]) # xywh
  146. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  147. for p, b in zip(pred.tolist(), box.tolist()):
  148. jdict.append({'image_id': image_id,
  149. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  150. 'bbox': [round(x, 3) for x in b],
  151. 'score': round(p[4], 5)})
  152. # Assign all predictions as incorrect
  153. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  154. if nl:
  155. detected = [] # target indices
  156. tcls_tensor = labels[:, 0]
  157. # target boxes
  158. tbox = xywh2xyxy(labels[:, 1:5])
  159. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  160. if plots:
  161. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  162. # Per target class
  163. for cls in torch.unique(tcls_tensor):
  164. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  165. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  166. # Search for detections
  167. if pi.shape[0]:
  168. # Prediction to target ious
  169. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  170. # Append detections
  171. detected_set = set()
  172. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  173. d = ti[i[j]] # detected target
  174. if d.item() not in detected_set:
  175. detected_set.add(d.item())
  176. detected.append(d)
  177. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  178. if len(detected) == nl: # all targets already located in image
  179. break
  180. # Append statistics (correct, conf, pcls, tcls)
  181. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  182. # Plot images
  183. if plots and batch_i < 3:
  184. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  185. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  186. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  187. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  188. # Compute statistics
  189. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  190. if len(stats) and stats[0].any():
  191. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  192. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  193. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  194. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  195. else:
  196. nt = torch.zeros(1)
  197. # Print results
  198. pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
  199. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  200. # Print results per class
  201. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  202. for i, c in enumerate(ap_class):
  203. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  204. # Print speeds
  205. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  206. if not training:
  207. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  208. # Plots
  209. if plots:
  210. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  211. if wandb_logger and wandb_logger.wandb:
  212. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  213. wandb_logger.log({"Validation": val_batches})
  214. if wandb_images:
  215. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  216. # Save JSON
  217. if save_json and len(jdict):
  218. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  219. anno_json = './coco/annotations/instances_val2017.json' # annotations json
  220. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  221. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  222. with open(pred_json, 'w') as f:
  223. json.dump(jdict, f)
  224. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  225. from pycocotools.coco import COCO
  226. from pycocotools.cocoeval import COCOeval
  227. anno = COCO(anno_json) # init annotations api
  228. pred = anno.loadRes(pred_json) # init predictions api
  229. eval = COCOeval(anno, pred, 'bbox')
  230. if is_coco:
  231. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  232. eval.evaluate()
  233. eval.accumulate()
  234. eval.summarize()
  235. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  236. except Exception as e:
  237. print(f'pycocotools unable to run: {e}')
  238. # Return results
  239. model.float() # for training
  240. if not training:
  241. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  242. print(f"Results saved to {save_dir}{s}")
  243. maps = np.zeros(nc) + map
  244. for i, c in enumerate(ap_class):
  245. maps[c] = ap[i]
  246. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  247. if __name__ == '__main__':
  248. parser = argparse.ArgumentParser(prog='test.py')
  249. parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
  250. parser.add_argument('--data', type=str, default='data/voc.yaml', help='*.data path')
  251. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  252. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  253. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  254. parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
  255. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  256. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  257. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  258. parser.add_argument('--augment', action='store_true', help='augmented inference')
  259. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  260. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  261. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  262. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  263. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  264. parser.add_argument('--project', default='runs/test', help='save to project/name')
  265. parser.add_argument('--name', default='exp', help='save to project/name')
  266. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  267. parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
  268. opt = parser.parse_args()
  269. opt.save_json |= opt.data.endswith('coco.yaml')
  270. opt.data = check_file(opt.data) # check file
  271. print(opt)
  272. #check_requirements()
  273. if opt.task in ('train', 'val', 'test'): # run normally
  274. test(opt.data,
  275. opt.weights,
  276. opt.batch_size,
  277. opt.img_size,
  278. opt.conf_thres,
  279. opt.iou_thres,
  280. opt.save_json,
  281. opt.single_cls,
  282. opt.augment,
  283. opt.verbose,
  284. save_txt=opt.save_txt | opt.save_hybrid,
  285. save_hybrid=opt.save_hybrid,
  286. save_conf=opt.save_conf,
  287. trace=not opt.no_trace,
  288. )
  289. elif opt.task == 'speed': # speed benchmarks
  290. for w in opt.weights:
  291. test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
  292. elif opt.task == 'study': # run over a range of settings and save/plot
  293. # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
  294. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  295. for w in opt.weights:
  296. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  297. y = [] # y axis
  298. for i in x: # img-size
  299. print(f'\nRunning {f} point {i}...')
  300. r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
  301. plots=False)
  302. y.append(r + t) # results and times
  303. np.savetxt(f, y, fmt='%10.4g') # save
  304. os.system('zip -r study.zip study_*.txt')
  305. plot_study_txt(x=x) # plot

随着人工智能和大数据的发展,任一方面对自动化工具有着一定的需求,在当下疫情防控期间,使用mindspore来实现yolo模型来进行目标检测及语义分割,对视频或图片都可以进行口罩佩戴检测和行人社交距离检测,来对公共场所的疫情防控来实行自动化管理。