You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 6.9 kB

3 years ago
3 years ago
3 years ago
3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. import argparse
  2. import sys
  3. import time
  4. sys.path.append('./') # to run '$ python *.py' files in subdirectories
  5. import torch
  6. import torch.nn as nn
  7. import models
  8. from models.experimental import attempt_load, End2End
  9. from utils.activations import Hardswish, SiLU
  10. from utils.general import set_logging, check_img_size
  11. from utils.torch_utils import select_device
  12. from utils.add_nms import RegisterNMS
  13. if __name__ == '__main__':
  14. parser = argparse.ArgumentParser()
  15. parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
  16. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
  17. parser.add_argument('--batch-size', type=int, default=1, help='batch size')
  18. parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
  19. parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
  20. parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
  21. parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
  22. parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
  23. parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
  24. parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
  25. parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  26. parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
  27. parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
  28. opt = parser.parse_args()
  29. opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
  30. print(opt)
  31. set_logging()
  32. t = time.time()
  33. # Load PyTorch model# print a human readable model
  34. device = select_device(opt.device)
  35. model = attempt_load(opt.weights, map_location=device) # load FP32 model
  36. labels = model.names
  37. # Checks
  38. gs = int(max(model.stride)) # grid size (max stride)
  39. opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
  40. # Input
  41. img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
  42. # Update model
  43. for k, m in model.named_modules():
  44. m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
  45. if isinstance(m, models.common.Conv): # assign export-friendly activations
  46. if isinstance(m.act, nn.Hardswish):
  47. m.act = Hardswish()
  48. elif isinstance(m.act, nn.SiLU):
  49. m.act = SiLU()
  50. # elif isinstance(m, models.yolo.Detect):
  51. # m.forward = m.forward_export # assign forward (optional)
  52. model.model[-1].export = not opt.grid # set Detect() layer grid export
  53. y = model(img) # dry run
  54. if opt.include_nms:
  55. model.model[-1].include_nms = True
  56. y = None
  57. # TorchScript export 11
  58. try:
  59. print('\nStarting TorchScript export with torch %s...' % torch.__version__)
  60. f = opt.weights.replace('.pt', '.torchscript.pt') # filename
  61. ts = torch.jit.trace(model, img, strict=False)
  62. ts.save(f)
  63. print('TorchScript export success, saved as %s' % f)
  64. except Exception as e:
  65. print('TorchScript export failure: %s' % e)
  66. # ONNX export
  67. try:
  68. import onnx
  69. print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
  70. f = opt.weights.replace('.pt', '.onnx') # filename
  71. model.eval()
  72. output_names = ['classes', 'boxes'] if y is None else ['output']
  73. if opt.grid and opt.end2end:
  74. print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
  75. model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device)
  76. if opt.end2end and opt.max_wh is None:
  77. output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
  78. shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
  79. opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
  80. else:
  81. output_names = ['output']
  82. torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
  83. output_names=output_names,
  84. dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
  85. 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic and not opt.end2end else None)
  86. # Checks
  87. onnx_model = onnx.load(f) # load onnx model
  88. onnx.checker.check_model(onnx_model) # check onnx model
  89. if opt.end2end and opt.max_wh is None:
  90. for i in onnx_model.graph.output:
  91. for j in i.type.tensor_type.shape.dim:
  92. j.dim_param = str(shapes.pop(0))
  93. # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
  94. # # Metadata
  95. # d = {'stride': int(max(model.stride))}
  96. # for k, v in d.items():
  97. # meta = onnx_model.metadata_props.add()
  98. # meta.key, meta.value = k, str(v)
  99. # onnx.save(onnx_model, f)
  100. if opt.simplify:
  101. try:
  102. import onnxsim
  103. print('\nStarting to simplify ONNX...')
  104. onnx_model, check = onnxsim.simplify(onnx_model)
  105. assert check, 'assert check failed'
  106. except Exception as e:
  107. print(f'Simplifier failure: {e}')
  108. # print a human readable model
  109. # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
  110. onnx.save(onnx_model,f)
  111. print('ONNX export success, saved as %s' % f)
  112. if opt.include_nms:
  113. print('Registering NMS plugin for ONNX...')
  114. mo = RegisterNMS(f)
  115. mo.register_nms()
  116. mo.save(f)
  117. except Exception as e:
  118. print('ONNX export failure: %s' % e)
  119. # CoreML export
  120. try:
  121. import coremltools as ct
  122. print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
  123. # convert model from torchscript and apply pixel scaling as per detect.py
  124. model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
  125. f = opt.weights.replace('.pt', '.mlmodel') # filename
  126. model.save(f)
  127. print('CoreML export success, saved as %s' % f)
  128. except Exception as e:
  129. print('CoreML export failure: %s' % e)
  130. # Finish
  131. print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))

随着人工智能和大数据的发展,任一方面对自动化工具有着一定的需求,在当下疫情防控期间,使用mindspore来实现yolo模型来进行目标检测及语义分割,对视频或图片都可以进行口罩佩戴检测和行人社交距离检测,来对公共场所的疫情防控来实行自动化管理。