|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "d7cbe5ee",
- "metadata": {},
- "source": [
- "# Reparameterization"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "13393b70",
- "metadata": {},
- "source": [
- "## YOLOv7 reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "bf53becf",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.105.m.0.weight'].data[i, :, :, :] *= state_dict['model.105.im.0.implicit'].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.105.m.1.weight'].data[i, :, :, :] *= state_dict['model.105.im.1.implicit'].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.105.m.2.weight'].data[i, :, :, :] *= state_dict['model.105.im.2.implicit'].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.105.m.0.bias'].data += state_dict['model.105.m.0.weight'].mul(state_dict['model.105.ia.0.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.105.m.1.bias'].data += state_dict['model.105.m.1.weight'].mul(state_dict['model.105.ia.1.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.105.m.2.bias'].data += state_dict['model.105.m.2.weight'].mul(state_dict['model.105.ia.2.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.105.m.0.bias'].data *= state_dict['model.105.im.0.implicit'].data.squeeze()\n",
- "model.state_dict()['model.105.m.1.bias'].data *= state_dict['model.105.im.1.implicit'].data.squeeze()\n",
- "model.state_dict()['model.105.m.2.bias'].data *= state_dict['model.105.im.2.implicit'].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7.pt')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5b396a53",
- "metadata": {},
- "source": [
- "## YOLOv7x reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9d54d17f",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7x.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7x.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.121.m.0.weight'].data[i, :, :, :] *= state_dict['model.121.im.0.implicit'].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.121.m.1.weight'].data[i, :, :, :] *= state_dict['model.121.im.1.implicit'].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.121.m.2.weight'].data[i, :, :, :] *= state_dict['model.121.im.2.implicit'].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.121.m.0.bias'].data += state_dict['model.121.m.0.weight'].mul(state_dict['model.121.ia.0.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.121.m.1.bias'].data += state_dict['model.121.m.1.weight'].mul(state_dict['model.121.ia.1.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.121.m.2.bias'].data += state_dict['model.121.m.2.weight'].mul(state_dict['model.121.ia.2.implicit']).sum(1).squeeze()\n",
- "model.state_dict()['model.121.m.0.bias'].data *= state_dict['model.121.im.0.implicit'].data.squeeze()\n",
- "model.state_dict()['model.121.m.1.bias'].data *= state_dict['model.121.im.1.implicit'].data.squeeze()\n",
- "model.state_dict()['model.121.m.2.bias'].data *= state_dict['model.121.im.2.implicit'].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7x.pt')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "11a9108e",
- "metadata": {},
- "source": [
- "## YOLOv7-W6 reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d032c629",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7-w6.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7-w6.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "idx = 118\n",
- "idx2 = 122\n",
- "\n",
- "# copy weights of lead head\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data -= model.state_dict()['model.{}.m.0.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data -= model.state_dict()['model.{}.m.1.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data -= model.state_dict()['model.{}.m.2.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data -= model.state_dict()['model.{}.m.3.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data -= model.state_dict()['model.{}.m.0.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data -= model.state_dict()['model.{}.m.1.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data -= model.state_dict()['model.{}.m.2.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data -= model.state_dict()['model.{}.m.3.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.bias'.format(idx2)].data\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.{}.m.0.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.0.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.1.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.1.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.2.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.2.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.3.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.3.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].mul(state_dict['model.{}.ia.0.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].mul(state_dict['model.{}.ia.1.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].mul(state_dict['model.{}.ia.2.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].mul(state_dict['model.{}.ia.3.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data *= state_dict['model.{}.im.0.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data *= state_dict['model.{}.im.1.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data *= state_dict['model.{}.im.2.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data *= state_dict['model.{}.im.3.implicit'.format(idx2)].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7-w6.pt')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5f093d43",
- "metadata": {},
- "source": [
- "## YOLOv7-E6 reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "aa2b2142",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7-e6.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7-e6.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "idx = 140\n",
- "idx2 = 144\n",
- "\n",
- "# copy weights of lead head\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data -= model.state_dict()['model.{}.m.0.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data -= model.state_dict()['model.{}.m.1.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data -= model.state_dict()['model.{}.m.2.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data -= model.state_dict()['model.{}.m.3.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data -= model.state_dict()['model.{}.m.0.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data -= model.state_dict()['model.{}.m.1.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data -= model.state_dict()['model.{}.m.2.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data -= model.state_dict()['model.{}.m.3.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.bias'.format(idx2)].data\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.{}.m.0.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.0.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.1.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.1.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.2.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.2.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.3.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.3.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].mul(state_dict['model.{}.ia.0.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].mul(state_dict['model.{}.ia.1.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].mul(state_dict['model.{}.ia.2.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].mul(state_dict['model.{}.ia.3.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data *= state_dict['model.{}.im.0.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data *= state_dict['model.{}.im.1.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data *= state_dict['model.{}.im.2.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data *= state_dict['model.{}.im.3.implicit'.format(idx2)].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7-e6.pt')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a3bccf89",
- "metadata": {},
- "source": [
- "## YOLOv7-D6 reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e5216b70",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7-d6.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7-d6.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "idx = 162\n",
- "idx2 = 166\n",
- "\n",
- "# copy weights of lead head\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data -= model.state_dict()['model.{}.m.0.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data -= model.state_dict()['model.{}.m.1.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data -= model.state_dict()['model.{}.m.2.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data -= model.state_dict()['model.{}.m.3.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data -= model.state_dict()['model.{}.m.0.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data -= model.state_dict()['model.{}.m.1.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data -= model.state_dict()['model.{}.m.2.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data -= model.state_dict()['model.{}.m.3.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.bias'.format(idx2)].data\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.{}.m.0.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.0.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.1.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.1.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.2.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.2.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.3.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.3.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].mul(state_dict['model.{}.ia.0.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].mul(state_dict['model.{}.ia.1.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].mul(state_dict['model.{}.ia.2.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].mul(state_dict['model.{}.ia.3.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data *= state_dict['model.{}.im.0.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data *= state_dict['model.{}.im.1.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data *= state_dict['model.{}.im.2.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data *= state_dict['model.{}.im.3.implicit'.format(idx2)].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7-d6.pt')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "334c273b",
- "metadata": {},
- "source": [
- "## YOLOv7-E6E reparameterization"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "635fd8d2",
- "metadata": {},
- "outputs": [],
- "source": [
- "# import\n",
- "from copy import deepcopy\n",
- "from models.yolo import Model\n",
- "import torch\n",
- "from utils.torch_utils import select_device, is_parallel\n",
- "\n",
- "device = select_device('0', batch_size=1)\n",
- "# model trained by cfg/training/*.yaml\n",
- "ckpt = torch.load('cfg/training/yolov7-e6e.pt', map_location=device)\n",
- "# reparameterized model in cfg/deploy/*.yaml\n",
- "model = Model('cfg/deploy/yolov7-e6e.yaml', ch=3, nc=80).to(device)\n",
- "\n",
- "# copy intersect weights\n",
- "state_dict = ckpt['model'].float().state_dict()\n",
- "exclude = []\n",
- "intersect_state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict() and not any(x in k for x in exclude) and v.shape == model.state_dict()[k].shape}\n",
- "model.load_state_dict(intersect_state_dict, strict=False)\n",
- "model.names = ckpt['model'].names\n",
- "model.nc = ckpt['model'].nc\n",
- "\n",
- "idx = 261\n",
- "idx2 = 265\n",
- "\n",
- "# copy weights of lead head\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data -= model.state_dict()['model.{}.m.0.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data -= model.state_dict()['model.{}.m.1.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data -= model.state_dict()['model.{}.m.2.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data -= model.state_dict()['model.{}.m.3.weight'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.weight'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.weight'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.weight'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.weight'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data -= model.state_dict()['model.{}.m.0.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data -= model.state_dict()['model.{}.m.1.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data -= model.state_dict()['model.{}.m.2.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data -= model.state_dict()['model.{}.m.3.bias'.format(idx)].data\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.bias'.format(idx2)].data\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.bias'.format(idx2)].data\n",
- "\n",
- "# reparametrized YOLOR\n",
- "for i in range(255):\n",
- " model.state_dict()['model.{}.m.0.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.0.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.1.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.1.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.2.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.2.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- " model.state_dict()['model.{}.m.3.weight'.format(idx)].data[i, :, :, :] *= state_dict['model.{}.im.3.implicit'.format(idx2)].data[:, i, : :].squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data += state_dict['model.{}.m.0.weight'.format(idx2)].mul(state_dict['model.{}.ia.0.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data += state_dict['model.{}.m.1.weight'.format(idx2)].mul(state_dict['model.{}.ia.1.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data += state_dict['model.{}.m.2.weight'.format(idx2)].mul(state_dict['model.{}.ia.2.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data += state_dict['model.{}.m.3.weight'.format(idx2)].mul(state_dict['model.{}.ia.3.implicit'.format(idx2)]).sum(1).squeeze()\n",
- "model.state_dict()['model.{}.m.0.bias'.format(idx)].data *= state_dict['model.{}.im.0.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.1.bias'.format(idx)].data *= state_dict['model.{}.im.1.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.2.bias'.format(idx)].data *= state_dict['model.{}.im.2.implicit'.format(idx2)].data.squeeze()\n",
- "model.state_dict()['model.{}.m.3.bias'.format(idx)].data *= state_dict['model.{}.im.3.implicit'.format(idx2)].data.squeeze()\n",
- "\n",
- "# model to be saved\n",
- "ckpt = {'model': deepcopy(model.module if is_parallel(model) else model).half(),\n",
- " 'optimizer': None,\n",
- " 'training_results': None,\n",
- " 'epoch': -1}\n",
- "\n",
- "# save reparameterized model\n",
- "torch.save(ckpt, 'cfg/deploy/yolov7-e6e.pt')\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "63a62625",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|