You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test.py 17 kB

3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. import argparse
  2. import json
  3. import os
  4. from pathlib import Path
  5. from threading import Thread
  6. import numpy as np
  7. import torch
  8. import yaml
  9. from tqdm import tqdm
  10. from models.experimental import attempt_load
  11. from utils.datasets import create_dataloader
  12. from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
  13. box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
  14. from utils.metrics import ap_per_class, ConfusionMatrix
  15. from utils.plots import plot_images, output_to_target, plot_study_txt
  16. from utils.torch_utils import select_device, time_synchronized, TracedModel
  17. #方法1
  18. def test(data,
  19. weights=None,
  20. batch_size=32,
  21. imgsz=640,
  22. conf_thres=0.001,
  23. iou_thres=0.6, # for NMS
  24. save_json=False,
  25. single_cls=False,
  26. augment=False,
  27. verbose=False,
  28. model=None,
  29. dataloader=None,
  30. save_dir=Path(''), # for saving images
  31. save_txt=False, # for auto-labelling
  32. save_hybrid=False, # for hybrid auto-labelling
  33. save_conf=False, # save auto-label confidences
  34. plots=True,
  35. wandb_logger=None,
  36. compute_loss=None,
  37. half_precision=True,
  38. trace=False,
  39. is_coco=False):
  40. # Initialize/load model and set devices
  41. training = model is not None
  42. if training: # called by train.py
  43. device = next(model.parameters()).device # get model device
  44. else: # called directly
  45. set_logging()
  46. device = select_device(opt.device, batch_size=batch_size)
  47. # Directories
  48. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  49. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  50. # Load model
  51. model = attempt_load(weights, map_location=device) # load FP32 model
  52. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  53. imgsz = check_img_size(imgsz, s=gs) # check img_size
  54. if trace:
  55. model = TracedModel(model, device, opt.img_size)
  56. # Half 11
  57. half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
  58. if half:
  59. model.half()
  60. # Configures
  61. model.eval()
  62. if isinstance(data, str):
  63. is_coco = data.endswith('coco.yaml')
  64. with open(data) as f:
  65. data = yaml.load(f, Loader=yaml.SafeLoader)
  66. check_dataset(data) # check
  67. nc = 1 if single_cls else int(data['nc']) # number of classes
  68. iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
  69. niou = iouv.numel()
  70. # Logging##
  71. log_imgs = 0
  72. if wandb_logger and wandb_logger.wandb:
  73. log_imgs = min(wandb_logger.log_imgs, 100)
  74. # Dataloader
  75. if not training:
  76. if device.type != 'cpu':
  77. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  78. task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
  79. dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
  80. prefix=colorstr(f'{task}: '))[0]
  81. seen = 0
  82. confusion_matrix = ConfusionMatrix(nc=nc)
  83. names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
  84. coco91class = coco80_to_coco91_class()
  85. s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
  86. p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
  87. loss = torch.zeros(3, device=device)
  88. jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
  89. for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
  90. img = img.to(device, non_blocking=True)
  91. img = img.half() if half else img.float() # uint8 to fp16/32
  92. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  93. targets = targets.to(device)
  94. nb, _, height, width = img.shape # batch size, channels, height, width
  95. with torch.no_grad():
  96. # Run model
  97. t = time_synchronized()
  98. out, train_out = model(img, augment=augment) # inference and training outputs
  99. t0 += time_synchronized() - t
  100. # Compute loss
  101. if compute_loss:
  102. loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
  103. # Run NMS
  104. targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
  105. lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
  106. t = time_synchronized()
  107. out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
  108. t1 += time_synchronized() - t
  109. # Statistics per image
  110. for si, pred in enumerate(out):
  111. labels = targets[targets[:, 0] == si, 1:]
  112. nl = len(labels)
  113. tcls = labels[:, 0].tolist() if nl else [] # target class
  114. path = Path(paths[si])
  115. seen += 1
  116. if len(pred) == 0:
  117. if nl:
  118. stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
  119. continue
  120. # Predictionss
  121. predn = pred.clone()
  122. scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
  123. # Append to text file
  124. if save_txt:
  125. gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
  126. for *xyxy, conf, cls in predn.tolist():
  127. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  128. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  129. with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
  130. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  131. # W&B logging - Media Panel Plots
  132. if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
  133. if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
  134. box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
  135. "class_id": int(cls),
  136. "box_caption": "%s %.3f" % (names[cls], conf),
  137. "scores": {"class_score": conf},
  138. "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
  139. boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
  140. wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
  141. wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
  142. # Append to pycocotools JSON dictionary
  143. if save_json:
  144. # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
  145. image_id = int(path.stem) if path.stem.isnumeric() else path.stem
  146. box = xyxy2xywh(predn[:, :4]) # xywh
  147. box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
  148. for p, b in zip(pred.tolist(), box.tolist()):
  149. jdict.append({'image_id': image_id,
  150. 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
  151. 'bbox': [round(x, 3) for x in b],
  152. 'score': round(p[4], 5)})
  153. # Assign all predictions as incorrect tes
  154. correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
  155. if nl:
  156. detected = [] # target indices
  157. tcls_tensor = labels[:, 0]
  158. # target boxes
  159. tbox = xywh2xyxy(labels[:, 1:5])
  160. scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
  161. if plots:
  162. confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
  163. # Per target class
  164. for cls in torch.unique(tcls_tensor):
  165. ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
  166. pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
  167. # Search for detections
  168. if pi.shape[0]:
  169. # Prediction to target ious
  170. ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
  171. # Append detections
  172. detected_set = set()
  173. for j in (ious > iouv[0]).nonzero(as_tuple=False):
  174. d = ti[i[j]] # detected target
  175. if d.item() not in detected_set:
  176. detected_set.add(d.item())
  177. detected.append(d)
  178. correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
  179. if len(detected) == nl: # all targets already located in image
  180. break
  181. # Append statistics (correct, conf, pcls, tcls)
  182. stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
  183. # Plot images#
  184. if plots and batch_i < 3:
  185. f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
  186. Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
  187. f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
  188. Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
  189. # Compute statistics
  190. stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
  191. if len(stats) and stats[0].any():
  192. p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
  193. ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
  194. mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
  195. nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
  196. else:
  197. nt = torch.zeros(1)
  198. # Print results# print a human readable model
  199. pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
  200. print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
  201. # Print results per class
  202. if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
  203. for i, c in enumerate(ap_class):
  204. print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
  205. # Print speeds
  206. t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
  207. if not training:
  208. print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
  209. # Plots
  210. if plots:
  211. confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
  212. if wandb_logger and wandb_logger.wandb:
  213. val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
  214. wandb_logger.log({"Validation": val_batches})
  215. if wandb_images:
  216. wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
  217. # Save JSON
  218. if save_json and len(jdict):
  219. w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
  220. anno_json = './coco/annotations/instances_val2017.json' # annotations json
  221. pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
  222. print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
  223. with open(pred_json, 'w') as f:
  224. json.dump(jdict, f)
  225. try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
  226. from pycocotools.coco import COCO
  227. from pycocotools.cocoeval import COCOeval
  228. anno = COCO(anno_json) # init annotations api
  229. pred = anno.loadRes(pred_json) # init predictions api
  230. eval = COCOeval(anno, pred, 'bbox')
  231. if is_coco:
  232. eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
  233. eval.evaluate()
  234. eval.accumulate()
  235. eval.summarize()
  236. map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
  237. except Exception as e:
  238. print(f'pycocotools unable to run: {e}')
  239. # Return results
  240. model.float() # for training
  241. if not training:
  242. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  243. print(f"Results saved to {save_dir}{s}")
  244. maps = np.zeros(nc) + map
  245. for i, c in enumerate(ap_class):
  246. maps[c] = ap[i]
  247. return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
  248. if __name__ == '__main__':
  249. parser = argparse.ArgumentParser(prog='test.py')
  250. parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
  251. parser.add_argument('--data', type=str, default='data/voc.yaml', help='*.data path')
  252. parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
  253. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  254. parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
  255. parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
  256. parser.add_argument('--task', default='val', help='train, val, test, speed or study')
  257. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  258. parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
  259. parser.add_argument('--augment', action='store_true', help='augmented inference')
  260. parser.add_argument('--verbose', action='store_true', help='report mAP by class')
  261. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  262. parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
  263. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  264. parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
  265. parser.add_argument('--project', default='runs/test', help='save to project/name')
  266. parser.add_argument('--name', default='exp', help='save to project/name')
  267. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  268. parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
  269. opt = parser.parse_args()
  270. opt.save_json |= opt.data.endswith('coco.yaml')
  271. opt.data = check_file(opt.data) # check file
  272. print(opt)
  273. #check_requirements()
  274. #check
  275. if opt.task in ('train', 'val', 'test'): # run normally
  276. test(opt.data,
  277. opt.weights,
  278. opt.batch_size,
  279. opt.img_size,
  280. opt.conf_thres,
  281. opt.iou_thres,
  282. opt.save_json,
  283. opt.single_cls,
  284. opt.augment,
  285. opt.verbose,
  286. save_txt=opt.save_txt | opt.save_hybrid,
  287. save_hybrid=opt.save_hybrid,
  288. save_conf=opt.save_conf,
  289. trace=not opt.no_trace,
  290. )
  291. elif opt.task == 'speed': # speed benchmarks
  292. for w in opt.weights:
  293. test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
  294. elif opt.task == 'study': # run over a range of settings and save/plot
  295. # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
  296. x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
  297. for w in opt.weights:
  298. f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
  299. y = [] # y axis
  300. for i in x: # img-size
  301. print(f'\nRunning {f} point {i}...')
  302. r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
  303. plots=False)
  304. y.append(r + t) # results and times
  305. np.savetxt(f, y, fmt='%10.4g') # save
  306. os.system('zip -r study.zip study_*.txt')
  307. plot_study_txt(x=x) # plot

随着人工智能和大数据的发展,任一方面对自动化工具有着一定的需求,在当下疫情防控期间,使用mindspore来实现yolo模型来进行目标检测及语义分割,对视频或图片都可以进行口罩佩戴检测和行人社交距离检测,来对公共场所的疫情防控来实行自动化管理。