|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2.2.0\n",
- "sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)\n",
- "matplotlib 3.2.1\n",
- "numpy 1.18.5\n",
- "pandas 1.0.4\n",
- "sklearn 0.23.1\n",
- "tensorflow 2.2.0\n",
- "tensorflow.keras 2.3.0-tf\n"
- ]
- }
- ],
- "source": [
- "import matplotlib as mpl\n",
- "import matplotlib.pyplot as plt\n",
- "%matplotlib inline\n",
- "import numpy as np\n",
- "import sklearn\n",
- "import pandas as pd\n",
- "import os\n",
- "import sys\n",
- "import time\n",
- "import tensorflow as tf\n",
- "\n",
- "from tensorflow import keras\n",
- "\n",
- "print(tf.__version__)\n",
- "print(sys.version_info)\n",
- "for module in mpl, np, pd, sklearn, tf, keras:\n",
- " print(module.__name__, module.__version__)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- ".. _california_housing_dataset:\n",
- "\n",
- "California Housing dataset\n",
- "--------------------------\n",
- "\n",
- "**Data Set Characteristics:**\n",
- "\n",
- " :Number of Instances: 20640\n",
- "\n",
- " :Number of Attributes: 8 numeric, predictive attributes and the target\n",
- "\n",
- " :Attribute Information:\n",
- " - MedInc median income in block\n",
- " - HouseAge median house age in block\n",
- " - AveRooms average number of rooms\n",
- " - AveBedrms average number of bedrooms\n",
- " - Population block population\n",
- " - AveOccup average house occupancy\n",
- " - Latitude house block latitude\n",
- " - Longitude house block longitude\n",
- "\n",
- " :Missing Attribute Values: None\n",
- "\n",
- "This dataset was obtained from the StatLib repository.\n",
- "http://lib.stat.cmu.edu/datasets/\n",
- "\n",
- "The target variable is the median house value for California districts.\n",
- "\n",
- "This dataset was derived from the 1990 U.S. census, using one row per census\n",
- "block group. A block group is the smallest geographical unit for which the U.S.\n",
- "Census Bureau publishes sample data (a block group typically has a population\n",
- "of 600 to 3,000 people).\n",
- "\n",
- "It can be downloaded/loaded using the\n",
- ":func:`sklearn.datasets.fetch_california_housing` function.\n",
- "\n",
- ".. topic:: References\n",
- "\n",
- " - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,\n",
- " Statistics and Probability Letters, 33 (1997) 291-297\n",
- "\n",
- "(20640, 8)\n",
- "(20640,)\n"
- ]
- }
- ],
- "source": [
- "from sklearn.datasets import fetch_california_housing\n",
- "\n",
- "housing = fetch_california_housing()\n",
- "print(housing.DESCR)\n",
- "print(housing.data.shape)\n",
- "print(housing.target.shape)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(11610, 8) (11610,)\n",
- "(3870, 8) (3870,)\n",
- "(5160, 8) (5160,)\n"
- ]
- }
- ],
- "source": [
- "from sklearn.model_selection import train_test_split\n",
- "\n",
- "x_train_all, x_test, y_train_all, y_test = train_test_split(\n",
- " housing.data, housing.target, random_state = 7)\n",
- "x_train, x_valid, y_train, y_valid = train_test_split(\n",
- " x_train_all, y_train_all, random_state = 11)\n",
- "print(x_train.shape, y_train.shape)\n",
- "print(x_valid.shape, y_valid.shape)\n",
- "print(x_test.shape, y_test.shape)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.preprocessing import StandardScaler\n",
- "\n",
- "scaler = StandardScaler()\n",
- "x_train_scaled = scaler.fit_transform(x_train)\n",
- "x_valid_scaled = scaler.transform(x_valid)\n",
- "x_test_scaled = scaler.transform(x_test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 1.3733 - val_loss: 0.7411\n",
- "Epoch 2/10\n",
- "363/363 [==============================] - 1s 3ms/step - loss: 0.6284 - val_loss: 0.6279\n",
- "Epoch 3/10\n",
- "363/363 [==============================] - 1s 3ms/step - loss: 0.5568 - val_loss: 0.5713\n",
- "Epoch 4/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.5257 - val_loss: 0.5383\n",
- "Epoch 5/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.4986 - val_loss: 0.5133\n",
- "Epoch 6/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.4869 - val_loss: 0.5010\n",
- "Epoch 7/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.4706 - val_loss: 0.4821\n",
- "Epoch 8/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.4531 - val_loss: 0.4714\n",
- "Epoch 9/10\n",
- "363/363 [==============================] - 1s 2ms/step - loss: 0.4455 - val_loss: 0.4670\n",
- "Epoch 10/10\n",
- "363/363 [==============================] - 1s 3ms/step - loss: 0.4368 - val_loss: 0.4615\n"
- ]
- }
- ],
- "source": [
- "# RandomizedSearchCV\n",
- "# 1. 因为是sklearn的接口,转化为sklearn的model\n",
- "# 2. 定义参数集合\n",
- "# 3. 搜索参数\n",
- "\n",
- "def build_model(hidden_layers = 1,\n",
- " layer_size = 30,\n",
- " learning_rate = 3e-3):\n",
- " model = keras.models.Sequential()\n",
- " #因为不知道第一个输入的shape是多大的,因此我们需要单独从for循环里拿出来,for循环里的是输出再次作为输入\n",
- " model.add(keras.layers.Dense(layer_size, activation='relu',\n",
- " input_shape=x_train.shape[1:]))\n",
- " for _ in range(hidden_layers - 1):\n",
- " model.add(keras.layers.Dense(layer_size,\n",
- " activation = 'relu'))\n",
- " model.add(keras.layers.Dense(1))\n",
- " optimizer = keras.optimizers.SGD(learning_rate)\n",
- " model.compile(loss = 'mse', optimizer = optimizer)\n",
- " return model\n",
- "\n",
- "#KerasRegressor返回一个sk的model,build_fn是一个回调函数\n",
- "sklearn_model = tf.keras.wrappers.scikit_learn.KerasRegressor(\n",
- " build_fn = build_model)\n",
- "callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]\n",
- "#下面只是先对sk封装tf模型的一个测试\n",
- "history = sklearn_model.fit(x_train_scaled, y_train,\n",
- " epochs = 10,\n",
- " validation_data = (x_valid_scaled, y_valid),\n",
- " callbacks = callbacks)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAEzCAYAAAACSWsXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXgc1Z3u8e/pTa1dsmzJtmTJBhuMsYwtzA5G7FsCyRAGCDBAAs5kJTO5TJxkLpObm5lM4sxkcp94QpgECITEeAhJHHBCmMRmNcbG+4IXjBd5kzftai2tc/+oltRa3ZJaXXLr/TxPP13Vfbr6p/Pw8Pqcqj5lrLWIiIiIezxuFyAiIjLaKYxFRERcpjAWERFxmcJYRETEZQpjERERlymMRUREXHbKMDbGPGmMqTTGbO7jfWOM+X/GmF3GmI3GmLL4lykiIpK8YhkZPw3c2M/7NwHTIo/5wI+HXpaIiMjoccowtta+Dpzop8ltwDPW8Q6QY4yZEK8CRUREkl08zhkXAvuj9isir4mIiEgMfIn8MmPMfJypbFJTU8+fNGlS3I7d1taGxxP/69GONFha2yyFGbrWrd1w9bV0pX5ODPVzYqifYceOHcesteN6ey8eYXwAiE7VoshrPVhrnwCeAJg7d65ds2ZNHL7esWLFCsrLy+N2vHaLlu9i4SvbWfXYdeSkBeJ+/NPRcPW1dKV+Tgz1c2Kon8EYs7ev9+Lxz5SlwN9Erqq+GKi21h6Kw3FHhLLiXADW7atyuRIREUlWpxwZG2N+BZQDY40xFcA/AX4Aa+3jwDLgZmAX0AA8OFzFuuG8Sdl4PYa1+05y1fR8t8sREZEkdMowttbefYr3LfD5uFU0wqQFfEwfn8nafSfdLkVERJJUQi/gOl2VFefy4toKwm0Wr8e4XY6IiCtaWlqoqKggFAoN+LPZ2dls27ZtGKoaeYLBIEVFRfj9/pg/ozCOQVlJDs++s5cdR2o5Z0KW2+WIiLiioqKCzMxMJk+ejDEDG5jU1taSmZk5TJWNHNZajh8/TkVFBVOmTIn5c6P7OvMYtV/EpalqERnNQqEQeXl5Aw7i0cQYQ15e3oBnDxTGMSgek0ZeeoC1e3VFtYiMbgriUxtMHymMY2CMYU5xLus0MhYRcVVGRobbJQwLhXGMykpy2H2snpP1zW6XIiIiSUZhHKOOxT/2a3QsIuI2ay2PPvooM2fOpLS0lOeffx6AQ4cOMW/ePGbPns3MmTN54403CIfDPPDAAx1tf/CDH7hcfU+6mjpGs4oii3/sreLq6QVulyMiMqq9+OKLrF+/ng0bNnDs2DEuuOAC5s2bxy9/+UtuuOEGvvGNbxAOh2loaGD9+vUcOHCAzZs3A1BVNfKu/1EYxygt4OOcCVr8Q0QE4P/8fgtbD9bE3D4cDuP1evttM2NiFv/00XNjOt6bb77J3XffjdfrpaCggCuvvJLVq1dzwQUX8KlPfYqWlhY+9rGPMXv2bM444wx2797NF7/4RW655Rauv/76mOtOFE1TD0BZcS4b9lcRbrNulyIiIr2YN28er7/+OoWFhTzwwAM888wz5ObmsmHDBsrLy3n88cd56KGH3C6zB42MB6CsOJdnVu5l++FaZkzU4h8iMnrFOoJtF+9FP6644gp+8pOfcP/993PixAlef/11Fi5cyN69eykqKuLhhx+mqamJtWvXcvPNNxMIBLj99ts5++yzuffee+NWR7wojAcgevEPhbGIiHs+/vGPs3LlSs477zyMMXzve99j/Pjx/PznP2fhwoX4/X4yMjJ45plnOHDgAA8++CBtbW0AfOc733G5+p4UxgMwaUwqYzMCrN13knsvLnG7HBGRUaeurg5w1n9YuHAhCxcu7PL+/fffz/3339/jc2vXrk1IfYOlc8YD0Ln4x8i7Ek9ERE5fCuMBKivO5cNj9ZzQ4h8iIhInCuMBKivOAdDSmCIiEjcK4wGaVZSDz2P0e2MREYkbhfEApQa8nDMhS3dwEhGRuFEYD0JZcQ4bKqpoDbe5XYqIiCQBhfEglJXk0tAcZvuRWrdLERGRJKAwHoTOxT80VS0iMpL1d//jPXv2MHPmzARW0zeF8SAU5aYyNiOFdXt1EZeIiAydwngQjDGUFefoimoRkQRbsGABixYt6tj/5je/ybe//W2uueYaysrKKC0t5Xe/+92AjxsKhXjwwQcpLS1lzpw5LF++HIAtW7Zw4YUXMnv2bGbNmsXOnTupr6/nlltu4bzzzmPmzJkd91IeCi2HOUhlJbn8aesRjtc1kZeR4nY5IiKJ9YcFcHhTzM1Tw63gPUXkjC+Fm/613yZ33nknX/7yl/n85z8PwJIlS3jllVf40pe+RFZWFseOHePiiy/m1ltvxRgTc32LFi3CGMOmTZt4//33uf7669mxYwePP/44jzzyCPfccw/Nzc2Ew2GWLVvGxIkTefnllwGorq6O+Xv6opHxILWfN9bSmCIiiTNnzhwqKys5ePAgGzZsIDc3l/Hjx/P1r3+dWbNmce2113LgwAGOHDkyoOO++eabHXdzmj59OiUlJezYsYNLLrmEf/mXf+G73/0ue/fuJTU1ldLSUl599VW++tWv8sYbb5CdnT3kv0sj40GaVZTdsfjHtTMK3C5HRCSxTjGC7a4xjrdQvOOOO3jhhRc4fPgwd955J8899xxHjx7lvffew+/3M3nyZEKhUFy+65Of/CQXXXQRL7/8MjfffDM/+clPuPrqq1m7di3Lli3jH//xH7nmmmt47LHHhvQ9CuNBCvq9zJiYpfPGIiIJduedd/Lwww9z7NgxXnvtNZYsWUJ+fj5+v5/ly5ezd+/eAR/ziiuu4LnnnuPqq69mx44d7Nu3j7PPPpvdu3dzxhln8KUvfYl9+/axceNGpk+fzpgxY7j33nvJycnhpz/96ZD/JoXxEJQV5/L86v20htvweTXjLyKSCOeeey61tbUUFhYyYcIE7rnnHj760Y9SWlrK3LlzmT59+oCP+bnPfY7PfvazlJaW4vP5ePrpp0lJSWHJkiU8++yz+P3+junw1atX8+ijj+LxePD7/fz4xz8e8t+kMB6COcU5PP32Ht4/XMvMwqGfMxARkdhs2tR58djYsWNZuXJlr+3a73/cm8mTJ7N582YAgsEgTz31VI82CxYsYMGCBV1eu+GGG7jhhhsGU3afNJwbgs6LuDRVLSIig6eR8RAU5aYyLjOFtfuquO8St6sREZHebNq0ifvuu6/LaykpKaxatcqlinpSGA+BFv8QERn5SktLWb9+vdtl9EvT1ENUVpzL3uMNHKtrcrsUEZFhZ611u4QRbzB9pDAeorISLf4hIqNDMBjk+PHjCuR+WGs5fvw4wWBwQJ/TNPUQlRZ2Lv5xnRb/EJEkVlRUREVFBUePHh3wZ0Oh0IAD6nQVDAYpKioa0GcUxkMU9Hs5d2IWa3UHJxFJcn6/nylTpgzqsytWrGDOnDlxrih5aJo6DuYU57KxoprWcJvbpYiIyGlIYRwHZSW5NLaEef9wrduliIjIaUhhHAdlxTkA+omTiIgMisI4DgpzUsnPTNF5YxERGRSFcRw4i3/kslY/bxIRkUFQGMdJWUkO+05o8Q8RERk4hXGctN80QlPVIiIyUArjOJlZmI3fazRVLSIiA6YwjpOg38uMidm6olpERAZMYRxHZcU5bKyookWLf4iIyADEFMbGmBuNMduNMbuMMQt6eb/YGLPcGLPOGLPRGHNz/Esd+cqKcwm1tPH+IS3+ISIisTtlGBtjvMAi4CZgBnC3MWZGt2b/CCyx1s4B7gL+M96Fng7a7+CkqWoRERmIWEbGFwK7rLW7rbXNwGLgtm5tLJAV2c4GDsavxNPHxOwgBVkpCmMRERkQc6r7UhpjPgHcaK19KLJ/H3CRtfYLUW0mAH8CcoF04Fpr7Xu9HGs+MB+goKDg/MWLF8fr76Curo6MjIy4HW+wfrQuxN6aNhZemeZ2KcNmpPR1slM/J4b6OTHUz3DVVVe9Z62d29t78bqF4t3A09bafzPGXAI8a4yZaa3tciWTtfYJ4AmAuXPn2vLy8jh9vXN7rngeb7B2enbzz8u2ce75lzAuM8XtcobFSOnrZKd+Tgz1c2Kon/sXyzT1AWBS1H5R5LVonwaWAFhrVwJBYGw8CjzdlJXophEiIjIwsYTxamCaMWaKMSaAc4HW0m5t9gHXABhjzsEJ46PxLPR0ce7E9sU/FMYiIhKbU4axtbYV+ALwCrAN56rpLcaYbxljbo00+wrwsDFmA/Ar4AF7qpPRSSro93LuxGzW7dVKXCIiEpuYzhlba5cBy7q99ljU9lbgsviWdvoqK87ll+/upSXcht+rdVVERKR/SophUFaSQ6iljW2HatwuRURETgMK42GgOziJiMhAKIyHwcScVMZnBXUHJxERiYnCeJiUleToimoREYmJwniYlBXnUnGykcrakNuliIjICKcwHiZzOs4ba6paRET6pzAeJjMLswh4PazTVLWIiJyCwniYpPi8nFuYpfPGIiJySgrjYVRWnMvGimqaW9tO3VhEREat5AjjxpMUVrwMbWG3K+mirDiXplYt/iEiIv1LjjDe8DzTdj0BT38ETnzodjUddAcnERGJRXKE8UWfYdv0L8ORLfDjy2DNkzAC7lMxITuVidla/ENERPqXHGFsDEfGXwWfexsmXQgv/R384naoOeh2ZcwpydWymCIi0q/kCON22UVw32/g5u/DvpXwnxfDhuddHSWXFedyoKqRyhot/iEiIr1LrjAGMAYufBj+9k0Ydw78Zj4suQ/qj7lSTlmxzhuLiEj/ki+M2+WdCQ8ug+u+BTtegUUXwbaXEl7GuROzCfg8Om8sIiJ9St4wBvB44bJHYP5rkDURnr8HfvO30Ji4YAz4PJQWZuu8sYiI9Cm5w7hdwQx46M8w7x9g4xL48aXwwV8S9vVlxTlsPKDFP0REpHejI4wBfAG4+hvw0KsQSIdnPw4vfwWa64f9q8uKc2lubWOrFv8QEZFejJ4wbld4PnzmdbjkC7D6Z87vkve9M6xfWVbi3MHpPU1Vi4hIL0ZfGAP4U+GGf4YHXgIbhidvhFcfg5bh+flRQVaQwpxUXVEtIiK9Gp1h3G7y5fDZt+H8++GtH8IT5XBow7B81ZziHNZpZCwiIr0Y3WEMkJIJH/0h3PMCNJ6E/7oaXvsehFvj+jVlxbkcrA5xuFqLf4iISFcK43bTroPPrYQZH4Pl/ww/uw6Obo/b4dvPG2uqWkREulMYR0sbA5/4GdzxNJzcA49fAW//CNqG/pOkGROySPF59HtjERHpQWHcm3M/Dp97B868Gv70Dfj5R5xwHoKOxT80MhYRkW4Uxn3JLIC7fwW3/Scc3uT8BOq9p4d004myklw2H6ihqTUcvzpFROS0pzDujzEw5x7niuvCMvj9I/DcHVBzaFCHKyvOoTncxpaDWvxDREQ6KYxjkTMJ7vsd3LQQ9rzp3Jpx438PeJRcVhy5iEvnjUVEJIrCOFYeD1w037k149hp8OJD8N/3Q/3xmA+RH1n8Y53u4CQiIlEUxgM1dip86hW45p/g/WXOKHn7H2L+eFlJri7iEhGRLhTGg+HxwhV/D/NXQEYB/Oou+O3nIFR9yo+WFedwqDrEoerGYS9TRERODwrjoRg/Ex7+C1zxv2DDr5wrrnev6PcjneeNNVUtIiIOhfFQ+QJwzf+GT78KvhR45jZY9ig0N/Ta/Jz2xT80VS0iIhEK43gpmgufeQMu+iy8+wQ8fjnsf7dHs4DPw6wiLf4hIiKdFMbxFEiDm/4V7v89hFvgyRvgf74JrU1dmpUV57JFi3+IiEiEwng4TJkHn30LZt8Db/7AuRPU4U0db88pzqU53MbmA1r8Q0REFMbDJ5gFt/0I7n4e6o/CE1fB6wsh3EpZSQ4A6zRVLSIiKIyH39k3OjedOOej8Jdvw5PXk9+0n6LcVJ03FhERQGGcGGlj4I6n4BNPwond8Pjl/F3mn1m354TblYmIyAigME6kmbc7o+QpV3J75Y/4QdP/5o3fP01TqPefQYmIyOigME60zPHwyeepuf4HTPce4Ir3HqHlX89k66JPUrXxZecqbBERGVV8bhcwKhlD1qWfou2Ce9n01u+pXvM8syqXk/Xiy9T/LovQ1FvIu+gumHyFs/SmiIgkNYWxizz+AKXlt0P57Xx45AQvvfLfZH2wlPL3fwPbf0VTSh6+0o/jLb0dJl3s3DlKRESSjsJ4hJhSMIYpf/MZakOf4sV3d7HrrRe5qGEF16x5Bu+anxLOmIB35l/BzL+CwvPBGLdLFhGROIkpjI0xNwI/BLzAT621/9pLm78GvglYYIO19pNxrHPUyAz6+Zt559B2+ddZseMhvvjGVlI/fJVba96hfNUT+N5ZBDnFcG4kmMfPUjCLiJzmThnGxhgvsAi4DqgAVhtjllprt0a1mQZ8DbjMWnvSGJM/XAWPFh6P4erpBVw9vYCdR+by85V7+Pp7O5jXtop7Gt/jvLd/hOet/4C8qZFgvh3yp7tdtoiIDEIsI+MLgV3W2t0AxpjFwG3A1qg2DwOLrLUnAay1lfEudDSbVpDJtz9WyqPXT2fJmjl8ceUe6huPcFfGBu4Jr6Hwje9jXv8e5M/oHDHnnel22SIiEqNYwrgQ2B+1XwFc1K3NWQDGmLdwprK/aa39Y1wqlA7ZaX4enncGn7p8Cv+z7QhPvTWZH+++giJ/Df8waTvXtr1F2vJvw/Jvw4TzOoM5p9jt0kVEpB/GWtt/A2M+AdxorX0osn8fcJG19gtRbV4CWoC/BoqA14FSa21Vt2PNB+YDFBQUnL948eK4/SF1dXVkZGTE7Xini/21bby6t4WVB1tpaYN5uSf4dNZqZje8TXbtTgCqs86mMv8Kjo67lOaUvCF/52jt60RTPyeG+jkx1M9w1VVXvWetndvbe7GE8SU4I90bIvtfA7DWfieqzePAKmvtU5H9PwMLrLWr+zru3Llz7Zo1awb6t/RpxYoVlJeXx+14p5sT9c0sXr2PZ1fu5VB1iOIxaXx+tpfb/O8S3P7byF2jDJRc6oyWz7kNMsYN6rtGe18nivo5MdTPiaF+BmNMn2Ecyw9XVwPTjDFTjDEB4C5gabc2vwXKI182FmfaevegK5YBG5Me4HPlU3n9H65i0SfLyM9M4at/qaVs+Uwem/A4+z75GpR/DeqPwctfgX87C575GKx9Bhq0RraIiJtOec7YWttqjPkC8ArO+eAnrbVbjDHfAtZYa5dG3rveGLMVCAOPWmuPD2fh0ju/18MtsyZwy6wJbKqo5qm3P2Txu/t5ZmUbV551FQ9e+wDzso/i2fob2PIiLP0ivPT3cOZVzhXZZ9/s3P5RREQSJqbfGVtrlwHLur32WNS2Bf4+8pARorQom3//69l87aZz+OWqffxi1V4eeHoNZ4xN5/5L7+P2+QvIOLEZNr8IW34Dv/kMeFNg2nXOVPZZN0Ig3e0/Q0Qk6WkFrlFgXGYKj1w7jc+Wn8kfNh/iybf28E9Lt/D9V7Zzx9xJ3H/pAkqu+xZUrO4M5vdfAn+aE8gz/wqmXgf+oNt/iohIUlIYjyIBn4fbZhdy2+xC1u07yVNv7eGZlXt46u0PuWZ6Pg9edgaX3vgdzA3/DPtWOsG89bfOdHYgE6bfAud+HF9Lq9t/iohIUlEYj1JzinOZU5zLN245h1+8s5dfrtrH/2xbxVkFGTxw6RQ+PucSUidfDjd9D/a87gTztqWwcTGXA2ydAhNnO79nnjDb2U7NdfvPEhE5LSmMR7mCrCBfuf5sPn/VVH6/4SBPvbWHr/9mE9/94/vcdcEk7rukhKIzr4Yzr4Zb/h32vsXuN3/NGcFqOPCeM6XdLqckEtCzO5/Txrj3x4mInCYUxgJA0O/ljrmT+MT5RazZe5Kn3vqQn775If/1xm6unzGeBy+bzIVTxmDOvIp9+w1ntP9esOEEHFoPB9fDoQ3O9tbfdR44p7hrOE+co4AWEelGYSxdGGO4YPIYLpg8hgNVjTy7ci+LV+/jj1sOM2NCFvdfWoKnoQ1rLcYYJ1jbR87tGk86wXxwfWdQb4v6aXr2JGd6e+JsmDDHeU4fm/g/VkRkhFAYS58Kc1JZcNN0HrlmGr9df4Cn39rDV3+9CYBvvfsnZkzIYsbErI7nafmZBHwe59zxGeXOo11jVefIuT2k33+p8/2sop5T3INcIUxE5HSjMJZTSg14ufvCYu66YBKbD9Tw6+Xv0po5nq0Ha1j87n4aW8IA+L2GqfmZXUN6QhbZaX5IzYEzrnQe7Rqr4PDGrlPcXQK6sNsU92zI0N05RST5KIwlZsYYSouyOT7JT3l5KQDhNsve4/VsPVTD1oM1bD1Uwxs7j/LrtRUdnyvMSe0ygp4xIYui3FRMag5Mmec82oVqogI6MorevgyIrKGeOaFnQGeOT2AviIjEn8JYhsTrMZwxLoMzxmXwkVkTO14/WtvEtkM1XUL6z9uO0NaeqUFf79PcwSyYfLnzaNdUC4c2dp3i3vFHOgI6Y3zPKe6sCYnrBBGRIVIYy7AYl5nCuMxxzDur87xvY3OY7UdqI+FcPYBp7kyYfJnzaNdUC4c3dw3onX8C2+a8n1HghHL7hWLjpjs/vfLqP3kRGXn0fyZJmNSAl9mTcpg9KafjtcFPc2dgSi6Bkks6v6C53rlVZPQU965XOwPa44cxUyBvqvMYOy2yPc25mtuYRHWFiEgXCmNxVdynuYsvhuKLO7+guR6ObIFjO+H4Tji+C47tgl3/A+HmznbB7M5gzpsKYyOBPeZMCKQlqDdEZLRSGMuIFNdp7kkXwqQLu35BWxiq9zvB3BHSO2HPm7Bxcde22ZMg78xuQT0NsovA4x3urhCRUUBhLKeNoUxzn1WQwbSCTKbmZ3Q8snInQ+5kmHZt1y9qrofjHzgB3f44thM2Pg9NNZ3tvCmRkI4Edce091StMiYiA6IwltNarNPcOyvreOuD4zS3tnW0GZ8VZFpBBmeOy2BaQQbT8jOZlp9Bbno6TJjlPKJZC/VHe055V74P2/8AbVF3s0odEwnnaU5Yt2+PmQK+lOHuFhE5zSiMJSn1Ns0dbrPsP9HArso6dlbWsbOyll2VdSxZs5+G5nBHu7EZgR4BPTU/g3GZKZiMfGfhkegruwHCLXByb2QkHX1u+lVY/4vOdsbjrNfdfn66/dx03jTImqiLyERGKYWxjBpej2Hy2HQmj03n2hkFHa+3tVkO1YTYecQJ551H6th1tI7frT9IbahztJsV9DGtoDOcp+Y7U98Ts4MYr98J1rFTgRu7fnGoJhLSHzhBfSwS1ntXQkt9Zzt/Wpdz0xMP1cDmE86Ud+qYzmddUCaSdBTGMup5PIbCnFQKc1IpP7tzuU1rLUdrm9hZWRcZTdey80gdr249wuLV+zvapQe8TM3P4Mz8zpH0tIIMinLT8HoMBLOgsMx5RLMWag5GjaY/cIL64FrY+lvOsm2w8/GeBfuCUeGc2zOse3sO5oDHM1xdKCJDpDAW6YMxhvysIPlZQS6b2vWuUifqm7sE9K7KOt7adYwX1x7oaJPi83DGuAwnnCMBPTU/g5K8dPxejzMlnV3oPKLX7AZobebtP7/EpbOnQ+MJ51aVXZ5Pdu5XboOG487dsmwbvTPO+uC9hnVu3yHuT41zr4pIbxTGIoMwJj3AhVPGcOGUrldN14Ra2FVZx64jneek1+47ydINBzva+DyGKWPTI+HsXOE9LT+DKWPTCfojP5XyBWhOGQMFM2Ivqq0NmqojgX2ylwCPeq496Pz+uvEEtDT0fUx/2qkDO3qUnjkeAukD6UoRQWEsEldZQT9lxbmUFed2eb2huZUPKuvZddQZSe+srGPboVr+uPlwx0ImHgMleemcOc4ZQddWtlC17gDZaX5yUv3kpAXISfWTlep3pr+780RuX5ma2/O9/rSE+g7t7qF+eFPn6+1rg3cXzHF+g51d5Nx5K7vQuUVmdqGzn1UIvsDAahRJcgpjkQRIC/goLcqmtCi7y+uhljB7jtd3BPSuyGj6tR2VtIQtz21b3+vxsoI+J5zT/GRHBXX3/dx0P9mpne383l7OG/uD4J/oXM0dq7Y2CFV1C+vjUHsIqg9AzQHnef+qSHBHM84V6V2CuqhraGcUaEEVGVUUxiIuCvq9TB+fxfTxWV1ebw238Yc/v8a5cy6gqrGFqoZmqhpanEdjC9UNzZHXnf39Jxqc1xtbsH0MWAEyUnyRsI48UgNRI+/u+50h3jF93s7jcaam08Y4V4D3p7k+EtAVUUFd4TyOboddf+l6VTmAx+fcLrO30XV2kbOdNkY/BZOkoTAWGYF8Xg+ZAWdBk4Foa7PUhlqpamzuCOqqhmaq24O7oYWqxmaqI++9X13T8V5rW98pHvR7yEmNHon7O/bbQzsn1U9eRgr5mSnkZ6WQFoj87yWQDuPOch69sdYZZXcE9f6uo+sDa2Db0q5riQP4Up3RfHahs2Rpb1Piwazev1NkhFEYiyQRj8eQneYnO81PSV7sn7PWUt8c7hiBVze2cDJqu2Nk3thCdUMLHx6rp6qhiqqGFprDvV/BnZHi6wjm/Mxg1+2o58wUH6b9XPf4mb0X2NbmrH7WfXTd/vzBcqg73PNq8pTszmCOHlVHn78WGQEUxiKCMYaMFB8ZKT6KBnD9l7WWUEsbVY3NnKxv4VhdE5W1TVTWhqisaeJobRNHakKs319FZW2IUEvP4A76PR1hXZAVZFy3AC/Icp5zMvIxmQVQeH7vxYRbnXPW3YO6fYr84DpoONbjY5d702FdHqRmOxefBSPPqVHbwezIfvR2tn76JXGjMBaRQTPGkBrwkhpIZUJ2/8FkraW2qZXKms6w7nx2trcdruG1HU3UNbX2+HzA64ksc5pCQS+jbef1fPKKivBE30YzWkuoW1gf4PCO9RSNzYTGKghVw4ndznNjVc9z2d15U7qGc/ew7m8/JUsXqUkHhbGIJIQxhqygn6ygn6n5/Z8Lb2hu7RLSRyLBfTTy2ofH6ln14QmqGlp6fNbrMYzNCESFdbcp8sw88vMmMrYkBb/Xwy67gqLy8t4LCbc4wdwezqHIoz24Q1VR71U7I+8TH+5jS44AAA00SURBVHTu23Dvx3V6xAnkYHaMo/Ko/UC6c8MRb0AXsSUJhbGIjDhpAR+Tx/qYPLb/BURCLWGO1joBfbQ2RGVkWrw9yA9Wh9hQUcXx+uYeV5kbA3npAdJMK1P3rKYgK8j4rCDjs52p8fHZzn52Wh4mfWzvBfTHWmiu6xrW/QV5qMoZlbfvn2pU3s7j7wxmb8D5Dbc3pdt2e5vo7fb2vXzWF2nXYzvSrst292NEtjXqHxCFsYictoJ+L5PGpDFpTP83z2gJtznns2u6ntOurA2x9cODHK4OsWG/E9o9v8NDQVYwKqyDPYI7PzNIwNftN9zGQEqm88guGvgf19rs3D+7I6xPRk2fN0Brk3OFebjZaRtu6rbdEmkT2W6od57DTZHX27cjxwg3DbzG/hhvlyC/uBXYlO2sre4POs++oNPGn+o8+1L72Y/6TJfP97LvPf2i7fSrWERkgPxeDxOyez+vvWLFCcrLrwCgqTVMZY0zuj5cE+JwdSiy3cSRaudCtMNbQl3ui91ubEagI6QLIqPq7ttZqT5MrNPKvgD4xsJgRuWDYW0koNsDvqmf7V5Cvb9/CLQ2UVWxl/Fjc5zXWxud54bjXfdbGqE15Dz3tcJbLDy+gYV3X/8ACGTA7Lvj1sX9URiLiESk+E490rbWUtXQ4oR1TYgj1ZHnSHgfrA6xdt9JTvZyPjvV742MrFP6DO1xmSm9r5Q23IyJ/ANgeJYqfX/FCsb3dW6+u/Z/GLSGOh8tofjtN57s4/3Grj+PC+YojEVERiJjDLnpAXLTA5wzoe9FRUItzii7e2i3b6/Ze5LKmqYev9M2BsZmRMI6MhXeue0E9pj0AGkBH0G/J/aR9umkyz8MErxwS/s/AlpCPReaGUYKYxGRYRD0eynOS6M4r/9R9on65qiRdVOX4K442cCavb1fNQ5OZqUHfKQFvJGHj/QUL6kBH+ld9r0d7dJTfJ1tA17SUjo/nx7wkZbiJeBN0pCPhdfvPFIyE/q1CmMREZcYY8jLSCEvI4VzJ2b32S7UEu6YBj9cE6K6sYX6pjANza00NDvP0fvVjS0cqmrsfK853Ot57r54PaYznANe0lKiwrtHqHeGflrA1+t+esDX73KrojAWERnxgn4vJXnplOQN/l7RLeE2GprDNDaHqW9upaHJee6+31u4NzSHqW9q5VhdMw3NDR37Dc3hAYVsyl/+4Kz0FvSRHnCe21d+S0/xkdnldS8ZKX7SU7xdPpMZdNq6cl59GCmMRURGAb/XQ3aqh+xUf1yP29za1jH6bogEdM+wD7P5/Z3kT5xEbVMr9U2t1IVaqWtq5UhNiN1NrdQ1halraul1ydTepPg8gwr29jCPbjsSgl1hLCIigxbweQj4AuT0/1NvVrTupbz8nFMerzXcRn1TmLrmzsCu6xbgHftR27WhViprQ+w+Orhgbw/p6GAfkx7g+3ecF9MxhkphLCIiI4bP6yE7zUN22tBH8L0Fe3SI14W67XcL9hO9LAIzXBTGIiKSlOIZ7MPN/YlyERGRUU5hLCIi4jKFsYiIiMsUxiIiIi6LKYyNMTcaY7YbY3YZYxb00+52Y4w1xsyNX4kiIiLJ7ZRhbIzxAouAm4AZwN3GmBm9tMsEHgFWxbtIERGRZBbLyPhCYJe1dre1thlYDNzWS7v/C3wXCMWxPhERkaQXSxgXAvuj9isir3UwxpQBk6y1L8exNhERkVFhyIt+GGM8wL8DD8TQdj4wH6CgoIAVK1YM9es71NXVxfV40jf1dWKonxND/ZwY6uf+xRLGB4BJUftFkdfaZQIzgRWR+1+OB5YaY2611q6JPpC19gngCYC5c+fa8vLywVfezYoVK4jn8aRv6uvEUD8nhvo5MdTP/Ytlmno1MM0YM8UYEwDuApa2v2mtrbbWjrXWTrbWTgbeAXoEsYiIiPTulGFsrW0FvgC8AmwDllhrtxhjvmWMuXW4CxQREUl2MZ0zttYuA5Z1e+2xPtqWD70sERGR0UMrcImIiLhMYSwiIuIyhbGIiIjLFMYiIiIuUxiLiIi4TGEsIiLiMoWxiIiIyxTGIiIiLlMYi4iIuExhLCIi4jKFsYiIiMsUxiIiIi5TGIuIiLhMYSwiIuIyhbGIiIjLFMYiIiIuUxiLiIi4TGEsIiLiMoWxiIiIyxTGIiIiLlMYi4iIuExhLCIi4jKFsYiIiMsUxiIiIi5TGIuIiLhMYSwiIuIyhbGIiIjLFMYiIiIuUxiLiIi4TGEsIiLiMoWxiIiIyxTGIiIiLlMYi4iIuExhLCIi4jKFsYiIiMsUxiIiIi5TGIuIiLhMYSwiIuIyhbGIiIjLFMYiIiIuUxiLiIi4TGEsIiLiMoWxiIiIyxTGIiIiLlMYi4iIuExhLCIi4rKYwtgYc6MxZrsxZpcxZkEv7/+9MWarMWajMebPxpiS+JcqIiKSnE4ZxsYYL7AIuAmYAdxtjJnRrdk6YK61dhbwAvC9eBcqIiKSrGIZGV8I7LLW7rbWNgOLgduiG1hrl1trGyK77wBF8S1TREQkefliaFMI7I/arwAu6qf9p4E/9PaGMWY+MB+goKCAFStWxFZlDOrq6uJ6POmb+jox1M+JoX5ODPVz/2IJ45gZY+4F5gJX9va+tfYJ4AmAuXPn2vLy8rh994oVK4jn8aRv6uvEUD8nhvo5MdTP/YsljA8Ak6L2iyKvdWGMuRb4BnCltbYpPuWJiIgkv1jOGa8GphljphhjAsBdwNLoBsaYOcBPgFuttZXxL1NERCR5nTKMrbWtwBeAV4BtwBJr7RZjzLeMMbdGmi0EMoD/NsasN8Ys7eNwIiIi0k1M54yttcuAZd1eeyxq+9o41yUiIjJqaAUuERERlymMRUREXKYwFhERcZnCWERExGUKYxEREZcpjEVERFymMBYREXGZwlhERMRlCmMRERGXKYxFRERcpjAWERFxmcJYRETEZQpjERERlymMRUREXKYwFhERcZnCWERExGUKYxEREZcpjEVERFymMBYREXGZwlhERMRlCmMRERGXKYxFRERcpjAWERFxmcJYRETEZQpjERERlymMRUREXKYwFhERcZnCWERExGUKYxEREZcpjEVERFymMBYREXGZwlhERMRlCmMRERGXKYxFRERcpjAWERFxmcJYRETEZQpjERERlymMRUREXKYwFhERcZnCWERExGUKYxEREZcpjEVERFymMBYREXGZwlhERMRlCmMRERGXxRTGxpgbjTHbjTG7jDELenk/xRjzfOT9VcaYyfEuVEREJFmdMoyNMV5gEXATMAO42xgzo1uzTwMnrbVTgR8A3413oSIiIskqlpHxhcAua+1ua20zsBi4rVub24CfR7ZfAK4xxpj4lSkiIpK8YgnjQmB/1H5F5LVe21hrW4FqIC8eBYqIiCQ7XyK/zBgzH5gf2a0zxmyP4+HHAsfieDzpm/o6MdTPiaF+Tgz1M5T09UYsYXwAmBS1XxR5rbc2FcYYH5ANHO9+IGvtE8ATMXzngBlj1lhr5w7HsaUr9XViqJ8TQ/2cGOrn/sUyTb0amGaMmWKMCQB3AUu7tVkK3B/Z/gTwF2utjV+ZIiIiyeuUI2Nrbasx5gvAK4AXeNJau8UY8y1gjbV2KfAz4FljzC7gBE5gi4iISAxiOmdsrV0GLOv22mNR2yHgjviWNmDDMv0tvVJfJ4b6OTHUz4mhfu6H0WyyiIiIu7QcpoiIiMuSIoxPtVynDJ0xZpIxZrkxZqsxZosx5hG3a0pmxhivMWadMeYlt2tJVsaYHGPMC8aY940x24wxl7hdU7Iyxvxd5P8bm40xvzLGBN2uaaQ57cM4xuU6Zehaga9Ya2cAFwOfVz8Pq0eAbW4XkeR+CPzRWjsdOA/197AwxhQCXwLmWmtn4lwIrIt8uzntw5jYluuUIbLWHrLWro1s1+L8j6v7SmwSB8aYIuAW4Kdu15KsjDHZwDycX4JgrW221la5W1VS8wGpkXUo0oCDLtcz4iRDGMeyXKfEUeSuXHOAVe5WkrT+A/gHoM3tQpLYFOAo8FTkdMBPjTHpbheVjKy1B4DvA/uAQ0C1tfZP7lY18iRDGEsCGWMygF8DX7bW1rhdT7IxxnwEqLTWvud2LUnOB5QBP7bWzgHqAV1vMgyMMbk4s5VTgIlAujHmXnerGnmSIYxjWa5T4sAY48cJ4uestS+6XU+Sugy41RizB+eUy9XGmF+4W1JSqgAqrLXtszsv4ISzxN+1wIfW2qPW2hbgReBSl2sacZIhjGNZrlOGKHJLzJ8B26y1/+52PcnKWvs1a22RtXYyzn/Lf7HWahQRZ9baw8B+Y8zZkZeuAba6WFIy2wdcbIxJi/x/5Bp0sVwPCb1r03Doa7lOl8tKRpcB9wGbjDHrI699PbI6m8jp6IvAc5F/xO8GHnS5nqRkrV1ljHkBWIvzq4x1aDWuHrQCl4iIiMuSYZpaRETktKYwFhERcZnCWERExGUKYxEREZcpjEVERFymMBYREXGZwlhERMRlCmMRERGX/X+FKIUr0iLK4AAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "<Figure size 576x360 with 1 Axes>"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "def plot_learning_curves(history):\n",
- " pd.DataFrame(history.history).plot(figsize=(8, 5))\n",
- " plt.grid(True)\n",
- " plt.gca().set_ylim(0, 1)\n",
- " plt.show()\n",
- "plot_learning_curves(history)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/5\n",
- "291/291 [==============================] - 2s 6ms/step - loss: 4.8169 - val_loss: 4.5730\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1151 - val_loss: 3.9278\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5486 - val_loss: 3.4186\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0920 - val_loss: 3.0067\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7177 - val_loss: 2.6650\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.2921\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0068 - val_loss: 4.7979\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1171 - val_loss: 4.0133\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4675 - val_loss: 3.4350\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.9901 - val_loss: 3.0049\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 2.6353 - val_loss: 2.6800\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 2.5213\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 9.3036 - val_loss: 8.4139\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 7.2816 - val_loss: 6.7408\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.8961 - val_loss: 5.5513\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.8929 - val_loss: 4.6717\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.1412 - val_loss: 4.0009\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.7795\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4101 - val_loss: 4.9982\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4919 - val_loss: 4.2074\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.8180 - val_loss: 3.6181\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3089 - val_loss: 3.1706\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.9186 - val_loss: 2.8252\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.6951\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.8741 - val_loss: 5.5725\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.7093 - val_loss: 4.5407\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8526 - val_loss: 3.7603\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.2003 - val_loss: 3.1531\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6945 - val_loss: 2.6759\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.5566\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.2941 - val_loss: 4.4632\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.9875 - val_loss: 4.1607\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 3.7184 - val_loss: 3.8935\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.4811 - val_loss: 3.6568\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.2701 - val_loss: 3.4459\n",
- "73/73 [==============================] - 0s 6ms/step - loss: 3.5133\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 3.6447 - val_loss: 3.4718\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.4244 - val_loss: 3.2581\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.2293 - val_loss: 3.0665\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0530 - val_loss: 2.8942\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8945 - val_loss: 2.7397\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.6940\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.7541 - val_loss: 6.7783\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.0625 - val_loss: 6.0975\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4993 - val_loss: 5.5445\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0333 - val_loss: 5.0862\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6410 - val_loss: 4.7017\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 4.4608\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.0449 - val_loss: 5.9840\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.5157 - val_loss: 5.4873\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0672 - val_loss: 5.0642\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6826 - val_loss: 4.6996\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3496 - val_loss: 4.3825\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 4.3887\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0486 - val_loss: 5.3851\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.5588 - val_loss: 4.8678\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1570 - val_loss: 4.4457\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8225 - val_loss: 4.0898\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5329 - val_loss: 3.7827\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.1506\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.7016 - val_loss: 1.8071\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.3571 - val_loss: 1.1725\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0011 - val_loss: 0.9637\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8598 - val_loss: 0.8660\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7885 - val_loss: 0.8054\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.7158\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 4.2231 - val_loss: 2.7347\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1102 - val_loss: 1.9381\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6375 - val_loss: 1.6005\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.4040 - val_loss: 1.4049\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2423 - val_loss: 1.2323\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.1663\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 2.3103 - val_loss: 1.2870\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 1.0396 - val_loss: 1.0022\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 0.8901 - val_loss: 0.9237\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.8270 - val_loss: 0.8664\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 0.7782 - val_loss: 0.8163\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.7750\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.9203 - val_loss: 1.3846\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9788 - val_loss: 0.9880\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8097 - val_loss: 0.8389\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.7312 - val_loss: 0.7660\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.6805 - val_loss: 0.7162\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.7457\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.5828 - val_loss: 2.8808\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 2.1687 - val_loss: 1.9635\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.5279 - val_loss: 1.4081\n",
- "Epoch 4/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 2s 6ms/step - loss: 1.1076 - val_loss: 1.0160\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8330 - val_loss: 0.7905\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.7793\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8419 - val_loss: 0.7693\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.6910 - val_loss: 0.6971\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 2s 6ms/step - loss: 0.6449 - val_loss: 0.6545\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.6056 - val_loss: 0.6123\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.5691 - val_loss: 0.5765\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.5029\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.3857 - val_loss: 1.2507\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.9986 - val_loss: 0.7857\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6906 - val_loss: 0.7207\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.6332 - val_loss: 0.6706\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.5890 - val_loss: 0.6230\n",
- "73/73 [==============================] - 0s 3ms/step - loss: 0.5720\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.8105 - val_loss: 0.7049\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.6388 - val_loss: 0.6503\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5910 - val_loss: 0.6074\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 2s 5ms/step - loss: 0.5540 - val_loss: 0.5716\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.5237 - val_loss: 0.5382\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.5127\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.8572 - val_loss: 0.7581\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6717 - val_loss: 0.6315\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.5860 - val_loss: 0.5931\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5448 - val_loss: 0.5634\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5176 - val_loss: 0.5400\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.5224\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1553 - val_loss: 1.3268\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8686 - val_loss: 0.6880\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6061 - val_loss: 0.6185\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5627 - val_loss: 0.5864\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.5363 - val_loss: 0.5630\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.5539\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.3482 - val_loss: 0.7642\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.6706 - val_loss: 0.9423\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.3385 - val_loss: 0.6238\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.5603 - val_loss: 0.5355\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4953 - val_loss: 0.4855\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4297\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.9948 - val_loss: 0.8004\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5545 - val_loss: 0.5286\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4713 - val_loss: 0.4793\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4382 - val_loss: 0.4580\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4208 - val_loss: 0.4364\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4151\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8369 - val_loss: 0.6091\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5032 - val_loss: 0.5002\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4483 - val_loss: 0.4479\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4240 - val_loss: 0.4295\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4113 - val_loss: 0.4319\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4317\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9804 - val_loss: 0.7013\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6021 - val_loss: 0.6005\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5350 - val_loss: 0.5424\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4914 - val_loss: 0.5037\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4616 - val_loss: 0.4892\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4591\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2666 - val_loss: 0.7628\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6287 - val_loss: 0.6277\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5483 - val_loss: 0.5561\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5036 - val_loss: 0.5200\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4761 - val_loss: 0.4922\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4822\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 11.3426 - val_loss: 9.6649\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 7.9234 - val_loss: 7.0355\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.9163 - val_loss: 5.3862\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6081 - val_loss: 4.2673\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6999 - val_loss: 3.4746\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.2731\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9577 - val_loss: 3.4614\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.2219 - val_loss: 2.8494\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6820 - val_loss: 2.4054\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2791 - val_loss: 2.0831\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 1.9737 - val_loss: 1.8387\n",
- "73/73 [==============================] - 0s 3ms/step - loss: 1.6884\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.7898 - val_loss: 4.1948\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 3.8259 - val_loss: 3.3577\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 3.1419 - val_loss: 2.7609\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.6467 - val_loss: 2.3250\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 2.2776 - val_loss: 1.9989\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 1.9425\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 5.8132 - val_loss: 5.0776\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 4.3716 - val_loss: 3.9162\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.4070 - val_loss: 3.1308\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7462 - val_loss: 2.5878\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2853 - val_loss: 2.2071\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.0792\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 3ms/step - loss: 6.1835 - val_loss: 5.5398\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.6036 - val_loss: 4.2368\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 2s 5ms/step - loss: 3.5759 - val_loss: 3.3669\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 2.8785 - val_loss: 2.7662\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.3915 - val_loss: 2.3408\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 2.3029\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 5.3489 - val_loss: 5.2520\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6538 - val_loss: 4.6065\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1037 - val_loss: 4.0977\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6613 - val_loss: 3.6868\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.2988 - val_loss: 3.3474\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.8968\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.2808 - val_loss: 5.2694\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.8091 - val_loss: 4.8044\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4032 - val_loss: 4.4053\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0512 - val_loss: 4.0588\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.7438 - val_loss: 3.7558\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.5815\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4911 - val_loss: 5.4957\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.8665 - val_loss: 4.8745\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3461 - val_loss: 4.3599\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9080 - val_loss: 3.9234\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5329 - val_loss: 3.5503\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.2364\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8242 - val_loss: 2.7665\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6523 - val_loss: 2.6052\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.4958 - val_loss: 2.4619\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3534 - val_loss: 2.3323\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2234 - val_loss: 2.2147\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.1935\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6630 - val_loss: 3.6252\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4023 - val_loss: 3.3646\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.1727 - val_loss: 3.1349\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.9694 - val_loss: 2.9313\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7887 - val_loss: 2.7489\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.6280\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4105 - val_loss: 1.5951\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1307 - val_loss: 0.9534\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7960 - val_loss: 0.7504\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6617 - val_loss: 0.6499\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5909 - val_loss: 0.5935\n",
- "73/73 [==============================] - 0s 947us/step - loss: 0.5350\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0406 - val_loss: 1.7767\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2125 - val_loss: 1.0339\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8665 - val_loss: 0.8640\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7737 - val_loss: 0.7995\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7262 - val_loss: 0.7606\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6801\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6898 - val_loss: 1.6810\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2707 - val_loss: 0.9581\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8615 - val_loss: 0.7624\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6941 - val_loss: 0.6858\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6329 - val_loss: 0.6572\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6158\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.5504 - val_loss: 1.1766\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9466 - val_loss: 0.8649\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7943 - val_loss: 0.8188\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7503 - val_loss: 0.7907\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7214 - val_loss: 0.7664\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.7321\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 3.0289 - val_loss: 1.5087\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.0624 - val_loss: 0.9393\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8066 - val_loss: 0.8399\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7395 - val_loss: 0.7947\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7124 - val_loss: 0.7646\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.7279\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.2040 - val_loss: 0.6957\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6681 - val_loss: 0.6113\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5447 - val_loss: 0.5632\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5139 - val_loss: 0.5305\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4909 - val_loss: 0.5009\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4421\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.3196 - val_loss: 0.6275\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5722 - val_loss: 0.5555\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5062 - val_loss: 0.5341\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4898 - val_loss: 0.5205\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4753 - val_loss: 0.5048\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4867\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6235 - val_loss: 0.7264\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6525 - val_loss: 0.6394\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5787 - val_loss: 0.5830\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5417 - val_loss: 0.7250\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.5343 - val_loss: 0.6121\n",
- "73/73 [==============================] - 0s 989us/step - loss: 0.5311\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 1.1426 - val_loss: 0.9536\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.3551 - val_loss: 0.7176\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6717 - val_loss: 0.6206\n",
- "Epoch 4/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5368 - val_loss: 0.5669\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5008 - val_loss: 0.5377\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.5252\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.7605 - val_loss: 1.7377\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6260 - val_loss: 0.5712\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5062 - val_loss: 0.5299\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4784 - val_loss: 0.5035\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4626 - val_loss: 0.4875\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4773\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9199 - val_loss: 0.8311\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9259 - val_loss: 0.5136\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4665 - val_loss: 0.4505\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4377 - val_loss: 0.4385\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4285 - val_loss: 0.4362\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.3902\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0497 - val_loss: 0.6815\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6271 - val_loss: 0.5409\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4848 - val_loss: 0.4983\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4560 - val_loss: 0.4947\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4378 - val_loss: 0.4619\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4390\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0232 - val_loss: 0.7099\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5465 - val_loss: 0.5445\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4846 - val_loss: 0.4916\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4548 - val_loss: 0.4742\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4365 - val_loss: 0.4621\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4356\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1020 - val_loss: 0.5543\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5268 - val_loss: 0.4679\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4284 - val_loss: 0.4413\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4153 - val_loss: 0.4318\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4082 - val_loss: 0.4287\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4246\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2389 - val_loss: 0.8160\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6134 - val_loss: 0.5100\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4617 - val_loss: 0.4737\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4357 - val_loss: 0.4494\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4217 - val_loss: 0.4427\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4434\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.9462 - val_loss: 5.3994\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.5568 - val_loss: 4.1889\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5882 - val_loss: 3.3368\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8971 - val_loss: 2.7195\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3940 - val_loss: 2.2686\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.1046\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.1198 - val_loss: 4.4710\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0800 - val_loss: 3.5782\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3225 - val_loss: 2.9251\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7587 - val_loss: 2.4422\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3270 - val_loss: 2.0739\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.9872\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.4180 - val_loss: 5.6155\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6716 - val_loss: 4.2075\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5735 - val_loss: 3.2943\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8514 - val_loss: 2.6878\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3604 - val_loss: 2.2671\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.1656\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6762 - val_loss: 5.1921\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4648 - val_loss: 4.1648\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6373 - val_loss: 3.4422\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0460 - val_loss: 2.9170\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6108 - val_loss: 2.5224\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.4740\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4584 - val_loss: 5.0898\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3076 - val_loss: 4.1554\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5466 - val_loss: 3.5179\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0222 - val_loss: 3.0626\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6462 - val_loss: 2.7265\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.5530\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.5961 - val_loss: 5.5606\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.9043 - val_loss: 4.9012\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3269 - val_loss: 4.3492\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8424 - val_loss: 3.8820\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4317 - val_loss: 3.4854\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.1216\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.6512 - val_loss: 6.0233\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.3255 - val_loss: 4.9024\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3633 - val_loss: 4.0702\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6494 - val_loss: 3.4423\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.1090 - val_loss: 2.9607\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.8689\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.2986 - val_loss: 6.0976\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4293 - val_loss: 5.2836\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.7284 - val_loss: 4.6202\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1536 - val_loss: 4.0759\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6796 - val_loss: 3.6258\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.4060\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 2ms/step - loss: 5.2352 - val_loss: 5.0652\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4762 - val_loss: 4.3471\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8593 - val_loss: 3.7632\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3549 - val_loss: 3.2855\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.9407 - val_loss: 2.8939\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.7242\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.4990 - val_loss: 6.1872\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6846 - val_loss: 5.4463\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0232 - val_loss: 4.8393\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4751 - val_loss: 4.3345\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0148 - val_loss: 3.9112\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.6314\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.7775 - val_loss: 1.0805\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8752 - val_loss: 0.8295\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7351 - val_loss: 0.7698\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6834 - val_loss: 0.7293\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6494 - val_loss: 0.6961\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6062\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.4905 - val_loss: 1.3628\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.9625 - val_loss: 0.9005\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7388 - val_loss: 0.7783\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6761 - val_loss: 0.7298\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6439 - val_loss: 0.6964\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.6262\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.4798 - val_loss: 1.1401\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.8964 - val_loss: 0.8314\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 2s 7ms/step - loss: 0.7351 - val_loss: 0.7566\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 2s 6ms/step - loss: 0.6868 - val_loss: 0.7200\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 0.6590 - val_loss: 0.6941\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6492\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.6666 - val_loss: 1.3002\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.0116 - val_loss: 0.9707\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8455 - val_loss: 0.8674\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7741 - val_loss: 0.8135\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7288 - val_loss: 0.7753\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.7695\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 2.8676 - val_loss: 1.4169\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 2s 5ms/step - loss: 0.9800 - val_loss: 0.8503\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.7140 - val_loss: 0.7437\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6514 - val_loss: 0.7036\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6218 - val_loss: 0.6772\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6605\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1299 - val_loss: 0.6697\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5930 - val_loss: 0.7551\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5378 - val_loss: 0.5328\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5006 - val_loss: 0.4989\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4861 - val_loss: 0.4922\n",
- "73/73 [==============================] - 0s 943us/step - loss: 0.4453\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.7476 - val_loss: 0.7915\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6503 - val_loss: 0.6637\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5645 - val_loss: 0.5692\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5084 - val_loss: 0.5288\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4789 - val_loss: 0.5013\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4777\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8266 - val_loss: 0.7361\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6013 - val_loss: 0.6103\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5167 - val_loss: 0.5371\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4818 - val_loss: 0.4986\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4585 - val_loss: 0.4728\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4512\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0593 - val_loss: 0.7257\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8543 - val_loss: 0.5513\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4859 - val_loss: 0.5154\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4652 - val_loss: 0.5001\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.4529 - val_loss: 0.4907\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4780\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2468 - val_loss: 0.6793\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5681 - val_loss: 0.5651\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4914 - val_loss: 0.5098\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4578 - val_loss: 0.4871\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4407 - val_loss: 0.4668\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4557\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 5ms/step - loss: 0.8795 - val_loss: 0.6695\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6576 - val_loss: 0.5118\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4713 - val_loss: 0.4705\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4478 - val_loss: 0.4548\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4295 - val_loss: 0.4358\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.3935\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6897 - val_loss: 0.6858\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5339 - val_loss: 0.5148\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4858 - val_loss: 0.4658\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4206 - val_loss: 0.4369\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4057 - val_loss: 0.4349\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4082\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4084 - val_loss: 0.5663\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4907 - val_loss: 0.4774\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4581 - val_loss: 0.4706\n",
- "Epoch 4/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4535 - val_loss: 0.4955\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 0.4354 - val_loss: 0.4710\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4747\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1389 - val_loss: 1.1028\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.3702 - val_loss: 0.5831\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4709 - val_loss: 0.4648\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4225 - val_loss: 0.4191\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4031 - val_loss: 0.4984\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4532\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6040 - val_loss: 1.1473\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8149 - val_loss: 0.5125\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4445 - val_loss: 0.4635\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4117 - val_loss: 0.4230\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.3932 - val_loss: 0.4073\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4032\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.8431 - val_loss: 4.4298\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8964 - val_loss: 3.5922\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.2067 - val_loss: 2.9695\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6906 - val_loss: 2.5035\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2988 - val_loss: 2.1467\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.4946\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6508 - val_loss: 3.3424\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8830 - val_loss: 2.6862\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3444 - val_loss: 2.2240\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.9541 - val_loss: 1.8881\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6693 - val_loss: 1.6400\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.5052\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0877 - val_loss: 4.3724\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.6712 - val_loss: 3.2121\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7445 - val_loss: 2.4536\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1272 - val_loss: 1.9471\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.7069 - val_loss: 1.6035\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.5064\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3458 - val_loss: 3.8979\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3387 - val_loss: 3.0390\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6441 - val_loss: 2.4462\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1550 - val_loss: 2.0293\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8072 - val_loss: 1.7341\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.7072\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.7489 - val_loss: 4.2925\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.7297 - val_loss: 3.4276\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0318 - val_loss: 2.8198\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.5223 - val_loss: 2.3716\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1374 - val_loss: 2.0333\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.8961\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.0949 - val_loss: 5.9642\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.2081 - val_loss: 5.1238\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.5058 - val_loss: 4.4552\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9423 - val_loss: 3.9172\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4844 - val_loss: 3.4773\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.4060\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.8099 - val_loss: 5.6138\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0486 - val_loss: 4.9111\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.4310 - val_loss: 4.3354\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9221 - val_loss: 3.8585\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 3.4999 - val_loss: 3.4587\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 3.3306\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.0719 - val_loss: 4.9424\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.3805 - val_loss: 4.2896\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8256 - val_loss: 3.7613\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3768 - val_loss: 3.3289\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0103 - val_loss: 2.9760\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.8672\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9293 - val_loss: 3.7809\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4273 - val_loss: 3.3214\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.0156 - val_loss: 2.9436\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6760 - val_loss: 2.6306\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.3935 - val_loss: 2.3690\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.4299\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6445 - val_loss: 5.4724\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.8032 - val_loss: 4.6855\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1332 - val_loss: 4.0505\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5889 - val_loss: 3.5309\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.1414 - val_loss: 3.1017\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.9799\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8680 - val_loss: 0.9095\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7450 - val_loss: 0.7481\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6777 - val_loss: 0.7161\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6517 - val_loss: 0.6906\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6303 - val_loss: 0.6672\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.5767\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.7646 - val_loss: 1.3593\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9766 - val_loss: 0.9108\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7827 - val_loss: 0.8161\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7270 - val_loss: 0.7671\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6918 - val_loss: 0.7324\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6594\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 2ms/step - loss: 2.4562 - val_loss: 1.0808\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8778 - val_loss: 0.7828\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7101 - val_loss: 0.7339\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6682 - val_loss: 0.7072\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6433 - val_loss: 0.6847\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6255\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.5754 - val_loss: 1.1130\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8611 - val_loss: 0.7854\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6886 - val_loss: 0.7143\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6345 - val_loss: 0.6764\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6030 - val_loss: 0.6476\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6255\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.6733 - val_loss: 0.9456\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8057 - val_loss: 0.7899\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7073 - val_loss: 0.7410\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6618 - val_loss: 0.7061\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6299 - val_loss: 0.6771\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6498\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0539 - val_loss: 0.7109\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6761 - val_loss: 0.6193\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5472 - val_loss: 0.5222\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4975 - val_loss: 0.4945\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4777 - val_loss: 0.4760\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4122\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0067 - val_loss: 0.6291\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5524 - val_loss: 0.6332\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.0710 - val_loss: 0.6396\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5363 - val_loss: 0.5346\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4777 - val_loss: 0.4961\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4685\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2691 - val_loss: 0.7390\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6981 - val_loss: 0.6452\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5722 - val_loss: 0.5759\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5152 - val_loss: 0.5298\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4863 - val_loss: 0.5171\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 0.4828\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1677 - val_loss: 0.7886\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0718 - val_loss: 0.7433\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5381 - val_loss: 0.5369\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4745 - val_loss: 0.4975\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4491 - val_loss: 0.4757\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4637\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9471 - val_loss: 0.7296\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8193 - val_loss: 0.6135\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5363 - val_loss: 0.5541\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4980 - val_loss: 0.5192\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4775 - val_loss: 0.5033\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4845\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.8326 - val_loss: 0.6469\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6240 - val_loss: 0.5958\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5536 - val_loss: 0.5016\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4686 - val_loss: 0.4842\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4493 - val_loss: 0.4616\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4097\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2851 - val_loss: 0.7020\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5312 - val_loss: 0.5198\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4622 - val_loss: 0.4763\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4367 - val_loss: 0.4503\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4220 - val_loss: 0.4425\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4271\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.5619 - val_loss: 0.8989\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4934 - val_loss: 0.4401\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4101 - val_loss: 0.4346\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.3935 - val_loss: 0.4130\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.3857 - val_loss: 0.3897\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.3874\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9801 - val_loss: 1.3518\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8492 - val_loss: 0.5649\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4798 - val_loss: 0.5138\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4331 - val_loss: 0.4536\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4110 - val_loss: 0.4318\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4307\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.1531 - val_loss: 0.7210\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.6263 - val_loss: 0.5434\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5054 - val_loss: 0.5116\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4522 - val_loss: 0.4736\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4431 - val_loss: 0.5277\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4751\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6641 - val_loss: 4.8325\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8576 - val_loss: 3.2776\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6229 - val_loss: 2.2628\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.8654 - val_loss: 1.6736\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.4440 - val_loss: 1.3556\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.2508\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 7.2170 - val_loss: 6.9118\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.9878 - val_loss: 5.8670\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.1511 - val_loss: 5.1158\n",
- "Epoch 4/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 2ms/step - loss: 4.5268 - val_loss: 4.5353\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0324 - val_loss: 4.0648\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.9163\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.5210 - val_loss: 4.8195\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0962 - val_loss: 3.8202\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3504 - val_loss: 3.2475\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.9146 - val_loss: 2.8860\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6333 - val_loss: 2.6334\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.5792\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0636 - val_loss: 4.9443\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.5002 - val_loss: 4.3994\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.0020 - val_loss: 3.9139\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5588 - val_loss: 3.4798\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.1645 - val_loss: 3.0939\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.8371\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.9923 - val_loss: 3.8633\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.3281 - val_loss: 3.2841\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8468 - val_loss: 2.8545\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.4866 - val_loss: 2.5283\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2078 - val_loss: 2.2688\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 2.1177\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.5277 - val_loss: 4.5153\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1607 - val_loss: 4.1431\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8010 - val_loss: 3.7765\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.4551 - val_loss: 3.4328\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.1402 - val_loss: 3.1273\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 2.8686\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.7848 - val_loss: 4.8538\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4333 - val_loss: 4.5093\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1206 - val_loss: 4.2002\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8409 - val_loss: 3.9234\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.5894 - val_loss: 3.6717\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.5211\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 4ms/step - loss: 9.1569 - val_loss: 8.6366\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 7.5285 - val_loss: 7.2997\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.4347 - val_loss: 6.3497\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6371 - val_loss: 5.6331\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.0232 - val_loss: 5.0635\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 4.8631\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 6.3648 - val_loss: 6.4245\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.8497 - val_loss: 5.9268\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.4040 - val_loss: 5.4928\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.0078 - val_loss: 5.1023\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.6443 - val_loss: 4.7369\n",
- "73/73 [==============================] - 0s 2ms/step - loss: 4.4073\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.1593 - val_loss: 5.2022\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 4.8037 - val_loss: 4.8456\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.4718 - val_loss: 4.5103\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1593 - val_loss: 4.1932\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 3.8634 - val_loss: 3.8906\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.8143\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.6233 - val_loss: 1.5174\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.1822 - val_loss: 1.1096\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.9414 - val_loss: 0.9299\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.8175 - val_loss: 0.8322\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.7501 - val_loss: 0.7778\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.6963\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.1645 - val_loss: 2.6877\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.9671 - val_loss: 1.7414\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 1.4915 - val_loss: 1.4736\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.3302 - val_loss: 1.3518\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.2437 - val_loss: 1.2727\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.2184\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2925 - val_loss: 1.8886\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3801 - val_loss: 1.2669\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0121 - val_loss: 0.9720\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8040 - val_loss: 0.7939\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6898 - val_loss: 0.7023\n",
- "73/73 [==============================] - 0s 741us/step - loss: 0.6630\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1169 - val_loss: 1.2152\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9299 - val_loss: 0.8905\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7871 - val_loss: 0.7966\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7281 - val_loss: 0.7472\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6913 - val_loss: 0.7120\n",
- "73/73 [==============================] - 0s 998us/step - loss: 0.7615\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4891 - val_loss: 1.2539\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9480 - val_loss: 0.8004\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7368 - val_loss: 0.7300\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6747 - val_loss: 0.6932\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6403 - val_loss: 0.6685\n",
- "73/73 [==============================] - 0s 887us/step - loss: 0.6678\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4230 - val_loss: 0.9523\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7410 - val_loss: 0.6910\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6234 - val_loss: 0.6393\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.5747 - val_loss: 0.5845\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5367 - val_loss: 0.5476\n",
- "73/73 [==============================] - 0s 890us/step - loss: 0.4781\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0420 - val_loss: 0.6764\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6167 - val_loss: 0.5992\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5512 - val_loss: 0.5490\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5034 - val_loss: 0.5085\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4736 - val_loss: 0.4957\n",
- "73/73 [==============================] - 0s 776us/step - loss: 0.4760\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0855 - val_loss: 1.4162\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2415 - val_loss: 1.2320\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0421 - val_loss: 1.0364\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8814 - val_loss: 0.8794\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7793 - val_loss: 0.7572\n",
- "73/73 [==============================] - 0s 731us/step - loss: 0.7009\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0203 - val_loss: 0.7237\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6118 - val_loss: 0.6342\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5551 - val_loss: 0.5826\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5133 - val_loss: 0.5398\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4800 - val_loss: 0.5091\n",
- "73/73 [==============================] - 0s 902us/step - loss: 0.4912\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8002 - val_loss: 1.0841\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8644 - val_loss: 0.8159\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7184 - val_loss: 0.7334\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6618 - val_loss: 0.6931\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6270 - val_loss: 0.6700\n",
- "73/73 [==============================] - 0s 741us/step - loss: 0.6656\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9480 - val_loss: 0.6132\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5560 - val_loss: 0.5532\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5083 - val_loss: 0.5110\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4791 - val_loss: 0.4829\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4592 - val_loss: 0.4626\n",
- "73/73 [==============================] - 0s 776us/step - loss: 0.4163\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1311 - val_loss: 0.6862\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6238 - val_loss: 0.6058\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5496 - val_loss: 0.5516\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5094 - val_loss: 0.5190\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4807 - val_loss: 0.4944\n",
- "73/73 [==============================] - 0s 750us/step - loss: 0.4804\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1722 - val_loss: 0.6078\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5294 - val_loss: 0.5360\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4759 - val_loss: 0.4791\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4560 - val_loss: 0.4741\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4444 - val_loss: 0.4566\n",
- "73/73 [==============================] - 0s 769us/step - loss: 0.4447\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3475 - val_loss: 0.9600\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8352 - val_loss: 0.8075\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7201 - val_loss: 0.7440\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6635 - val_loss: 0.6942\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6155 - val_loss: 0.6405\n",
- "73/73 [==============================] - 0s 701us/step - loss: 0.6084\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8615 - val_loss: 0.6151\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5342 - val_loss: 0.5509\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4822 - val_loss: 0.4939\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4543 - val_loss: 0.4626\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4327 - val_loss: 0.4645\n",
- "73/73 [==============================] - 0s 776us/step - loss: 0.4588\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.1586 - val_loss: 5.3790\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5237 - val_loss: 4.0776\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5179 - val_loss: 3.2189\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.8315 - val_loss: 2.6213\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3441 - val_loss: 2.1926\n",
- "73/73 [==============================] - 0s 705us/step - loss: 1.9314\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 7.8600 - val_loss: 6.4607\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.5827 - val_loss: 4.9671\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3741 - val_loss: 3.9834\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5144 - val_loss: 3.2495\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.8621 - val_loss: 2.6708\n",
- "73/73 [==============================] - 0s 712us/step - loss: 2.6098\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 7.8475 - val_loss: 6.9182\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.6535 - val_loss: 5.2722\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4071 - val_loss: 4.2072\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5414 - val_loss: 3.4290\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.8906 - val_loss: 2.8284\n",
- "73/73 [==============================] - 0s 734us/step - loss: 2.6736\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 7.7978 - val_loss: 6.8712\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4940 - val_loss: 5.0133\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2015 - val_loss: 3.9064\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3682 - val_loss: 3.1955\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.8020 - val_loss: 2.7297\n",
- "73/73 [==============================] - 0s 743us/step - loss: 2.4731\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0610 - val_loss: 4.8365\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2445 - val_loss: 4.0615\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5845 - val_loss: 3.4273\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0383 - val_loss: 2.8955\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5821 - val_loss: 2.4540\n",
- "73/73 [==============================] - 0s 795us/step - loss: 2.4359\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0115 - val_loss: 4.9367\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5337 - val_loss: 4.4908\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1286 - val_loss: 4.1078\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7801 - val_loss: 3.7770\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4782 - val_loss: 3.4883\n",
- "73/73 [==============================] - 0s 759us/step - loss: 3.2049\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3891 - val_loss: 4.3838\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9677 - val_loss: 3.9649\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5987 - val_loss: 3.5919\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2732 - val_loss: 3.2638\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9879 - val_loss: 2.9737\n",
- "73/73 [==============================] - 0s 756us/step - loss: 2.8622\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.5032 - val_loss: 5.3251\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7847 - val_loss: 4.6464\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2243 - val_loss: 4.1080\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7831 - val_loss: 3.6825\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4300 - val_loss: 3.3364\n",
- "73/73 [==============================] - 0s 741us/step - loss: 3.2063\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3948 - val_loss: 4.2735\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8824 - val_loss: 3.7927\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4405 - val_loss: 3.3761\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0552 - val_loss: 3.0141\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7174 - val_loss: 2.6972\n",
- "73/73 [==============================] - 0s 745us/step - loss: 2.5201\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.9653 - val_loss: 5.8882\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2793 - val_loss: 5.2471\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7084 - val_loss: 4.7055\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2204 - val_loss: 4.2358\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7954 - val_loss: 3.8254\n",
- "73/73 [==============================] - 0s 749us/step - loss: 3.7291\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9685 - val_loss: 1.1124\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9086 - val_loss: 0.8290\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7516 - val_loss: 0.7621\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6977 - val_loss: 0.7265\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6659 - val_loss: 0.6921\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.6005\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1963 - val_loss: 1.5580\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0259 - val_loss: 0.8754\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7683 - val_loss: 0.7825\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7145 - val_loss: 0.7427\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6839 - val_loss: 0.7145\n",
- "73/73 [==============================] - 0s 745us/step - loss: 0.6608\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3852 - val_loss: 1.2502\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9576 - val_loss: 0.8568\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7460 - val_loss: 0.7411\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6740 - val_loss: 0.6844\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6355 - val_loss: 0.6534\n",
- "73/73 [==============================] - 0s 678us/step - loss: 0.6334\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1238 - val_loss: 1.2594\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0309 - val_loss: 0.9895\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8577 - val_loss: 0.8801\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7830 - val_loss: 0.8265\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7413 - val_loss: 0.7910\n",
- "73/73 [==============================] - 0s 755us/step - loss: 0.7701\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5229 - val_loss: 1.3573\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1336 - val_loss: 0.9946\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8970 - val_loss: 0.8638\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7955 - val_loss: 0.8096\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7456 - val_loss: 0.7789\n",
- "73/73 [==============================] - 0s 773us/step - loss: 0.7643\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2120 - val_loss: 0.7290\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6061 - val_loss: 0.5779\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5221 - val_loss: 0.5214\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4830 - val_loss: 0.4880\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4586 - val_loss: 0.4659\n",
- "73/73 [==============================] - 0s 794us/step - loss: 0.4235\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2511 - val_loss: 0.9892\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8195 - val_loss: 0.6624\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5581 - val_loss: 0.5669\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5078 - val_loss: 0.5251\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4784 - val_loss: 0.5039\n",
- "73/73 [==============================] - 0s 782us/step - loss: 0.4810\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9067 - val_loss: 0.6472\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5555 - val_loss: 0.5485\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4997 - val_loss: 0.5108\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4699 - val_loss: 0.4810\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4597 - val_loss: 0.4688\n",
- "73/73 [==============================] - 0s 773us/step - loss: 0.4569\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2706 - val_loss: 0.6720\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5706 - val_loss: 0.5938\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5258 - val_loss: 0.5550\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4977 - val_loss: 0.5244\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4749 - val_loss: 0.5032\n",
- "73/73 [==============================] - 0s 737us/step - loss: 0.5040\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2697 - val_loss: 0.6926\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5834 - val_loss: 0.6005\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5354 - val_loss: 0.5558\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5024 - val_loss: 0.5205\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4770 - val_loss: 0.4957\n",
- "73/73 [==============================] - 0s 813us/step - loss: 0.4989\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8114 - val_loss: 0.5644\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4998 - val_loss: 0.4941\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4645 - val_loss: 0.4577\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4620 - val_loss: 0.4887\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5371 - val_loss: 0.4676\n",
- "73/73 [==============================] - 0s 785us/step - loss: 0.4544\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9807 - val_loss: 0.6228\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5320 - val_loss: 0.5100\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4643 - val_loss: 0.4632\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4374 - val_loss: 0.4405\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4216 - val_loss: 0.4283\n",
- "73/73 [==============================] - 0s 795us/step - loss: 0.4126\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3037 - val_loss: 0.7738\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5818 - val_loss: 0.5106\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4501 - val_loss: 0.4415\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4195 - val_loss: 0.4227\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4094 - val_loss: 0.4200\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.4179\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7948 - val_loss: 0.6184\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5231 - val_loss: 0.5104\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4645 - val_loss: 0.4827\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4427 - val_loss: 0.4622\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4295 - val_loss: 0.4479\n",
- "73/73 [==============================] - 0s 797us/step - loss: 0.4482\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8815 - val_loss: 1.8018\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1401 - val_loss: 1.0293\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8023 - val_loss: 0.7424\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6288 - val_loss: 0.6142\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5315 - val_loss: 0.5409\n",
- "73/73 [==============================] - 0s 770us/step - loss: 0.5320\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0118 - val_loss: 4.6170\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9815 - val_loss: 3.6953\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1890 - val_loss: 2.9776\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5746 - val_loss: 2.4242\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1076 - val_loss: 2.0075\n",
- "73/73 [==============================] - 0s 707us/step - loss: 1.8704\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9963 - val_loss: 4.3942\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5796 - val_loss: 3.2556\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7069 - val_loss: 2.5413\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1482 - val_loss: 2.0784\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.7759 - val_loss: 1.7648\n",
- "73/73 [==============================] - 0s 748us/step - loss: 1.6183\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7519 - val_loss: 4.0855\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2999 - val_loss: 2.9238\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.4370 - val_loss: 2.2299\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9157 - val_loss: 1.8096\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5931 - val_loss: 1.5461\n",
- "73/73 [==============================] - 0s 748us/step - loss: 1.4312\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9929 - val_loss: 4.6813\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0927 - val_loss: 3.9001\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4243 - val_loss: 3.3209\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9245 - val_loss: 2.8990\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5587 - val_loss: 2.5942\n",
- "73/73 [==============================] - 0s 747us/step - loss: 2.6023\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2935 - val_loss: 4.8570\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1148 - val_loss: 3.7904\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2019 - val_loss: 2.9567\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4980 - val_loss: 2.3245\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9810 - val_loss: 1.8730\n",
- "73/73 [==============================] - 0s 739us/step - loss: 1.8853\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9591 - val_loss: 4.7765\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3151 - val_loss: 4.1725\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7881 - val_loss: 3.6747\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3531 - val_loss: 3.2628\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9913 - val_loss: 2.9188\n",
- "73/73 [==============================] - 0s 733us/step - loss: 2.9332\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1775 - val_loss: 5.0870\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6242 - val_loss: 4.5608\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1376 - val_loss: 4.0952\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7064 - val_loss: 3.6831\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3243 - val_loss: 3.3188\n",
- "73/73 [==============================] - 0s 779us/step - loss: 3.2203\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.4158 - val_loss: 5.9867\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1875 - val_loss: 4.9300\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3307 - val_loss: 4.1768\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7101 - val_loss: 3.6235\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2461 - val_loss: 3.2031\n",
- "73/73 [==============================] - 0s 775us/step - loss: 3.0986\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4729 - val_loss: 4.2768\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8722 - val_loss: 3.7205\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3785 - val_loss: 3.2665\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9731 - val_loss: 2.8924\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6386 - val_loss: 2.5875\n",
- "73/73 [==============================] - 0s 740us/step - loss: 2.6656\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4344 - val_loss: 4.4528\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9696 - val_loss: 4.0036\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5653 - val_loss: 3.6109\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2116 - val_loss: 3.2672\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9053 - val_loss: 2.9670\n",
- "73/73 [==============================] - 0s 734us/step - loss: 2.7470\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3381 - val_loss: 1.1153\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8662 - val_loss: 0.8397\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7522 - val_loss: 0.7736\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7131 - val_loss: 0.7398\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6854 - val_loss: 0.7113\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.6311\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2561 - val_loss: 1.0241\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8306 - val_loss: 0.8050\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7231 - val_loss: 0.7439\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6818 - val_loss: 0.7067\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6502 - val_loss: 0.6766\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.6316\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4945 - val_loss: 1.4076\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9687 - val_loss: 0.8534\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7364 - val_loss: 0.7533\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6875 - val_loss: 0.7237\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6646 - val_loss: 0.7047\n",
- "73/73 [==============================] - 0s 723us/step - loss: 0.6433\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1617 - val_loss: 1.3695\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0031 - val_loss: 0.9240\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7751 - val_loss: 0.7954\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7037 - val_loss: 0.7504\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6678 - val_loss: 0.7184\n",
- "73/73 [==============================] - 0s 743us/step - loss: 0.6919\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3779 - val_loss: 1.0763\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8187 - val_loss: 0.7963\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6833 - val_loss: 0.7262\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6367 - val_loss: 0.6852\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6085 - val_loss: 0.6579\n",
- "73/73 [==============================] - 0s 725us/step - loss: 0.6309\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.0614 - val_loss: 0.6549\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5763 - val_loss: 0.5728\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5164 - val_loss: 0.5159\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4774 - val_loss: 0.4805\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4504 - val_loss: 0.4548\n",
- "73/73 [==============================] - 0s 711us/step - loss: 0.4067\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0348 - val_loss: 0.6440\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5472 - val_loss: 0.5333\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4788 - val_loss: 0.4913\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4522 - val_loss: 0.4811\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4368 - val_loss: 0.4566\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.4366\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1848 - val_loss: 0.6867\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6337 - val_loss: 0.5823\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5195 - val_loss: 0.5370\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4860 - val_loss: 0.5067\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4633 - val_loss: 0.4842\n",
- "73/73 [==============================] - 0s 769us/step - loss: 0.4617\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1639 - val_loss: 0.7197\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6331 - val_loss: 0.6613\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6715 - val_loss: 0.5386\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4791 - val_loss: 0.5033\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4572 - val_loss: 0.4787\n",
- "73/73 [==============================] - 0s 785us/step - loss: 0.4762\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0270 - val_loss: 0.6476\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5398 - val_loss: 0.5397\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4812 - val_loss: 0.4949\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4523 - val_loss: 0.4699\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4380 - val_loss: 0.4514\n",
- "73/73 [==============================] - 0s 756us/step - loss: 0.4447\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7495 - val_loss: 0.6997\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5457 - val_loss: 0.5050\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4546 - val_loss: 0.4584\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4297 - val_loss: 0.4342\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4084 - val_loss: 0.4056\n",
- "73/73 [==============================] - 0s 755us/step - loss: 0.3613\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9667 - val_loss: 0.5910\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5323 - val_loss: 0.5016\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4581 - val_loss: 0.4575\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4247 - val_loss: 0.4287\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4072 - val_loss: 0.4158\n",
- "73/73 [==============================] - 0s 777us/step - loss: 0.4019\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9655 - val_loss: 0.5448\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4861 - val_loss: 0.4841\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4452 - val_loss: 0.4581\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4193 - val_loss: 0.4270\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4039 - val_loss: 0.4250\n",
- "73/73 [==============================] - 0s 784us/step - loss: 0.4071\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8438 - val_loss: 0.6067\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6505 - val_loss: 0.6540\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6769 - val_loss: 0.5327\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4426 - val_loss: 0.4589\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4146 - val_loss: 0.4284\n",
- "73/73 [==============================] - 0s 761us/step - loss: 0.4282\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7299 - val_loss: 0.5967\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4993 - val_loss: 0.5064\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4567 - val_loss: 0.4636\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4197 - val_loss: 0.4369\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4032 - val_loss: 0.4196\n",
- "73/73 [==============================] - 0s 728us/step - loss: 0.4158\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.6228 - val_loss: 5.0109\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2094 - val_loss: 3.8786\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2886 - val_loss: 3.1267\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6749 - val_loss: 2.6246\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2651 - val_loss: 2.2845\n",
- "73/73 [==============================] - 0s 748us/step - loss: 2.0913\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2815 - val_loss: 4.8232\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9833 - val_loss: 3.7745\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1174 - val_loss: 3.0497\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5106 - val_loss: 2.5315\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0805 - val_loss: 2.1548\n",
- "73/73 [==============================] - 0s 790us/step - loss: 1.8916\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9459 - val_loss: 3.4256\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7096 - val_loss: 2.4190\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9359 - val_loss: 1.7957\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4690 - val_loss: 1.4218\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1965 - val_loss: 1.1990\n",
- "73/73 [==============================] - 0s 671us/step - loss: 1.0999\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3947 - val_loss: 3.7929\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1948 - val_loss: 2.7643\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3949 - val_loss: 2.1030\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8832 - val_loss: 1.6969\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5645 - val_loss: 1.4547\n",
- "73/73 [==============================] - 0s 741us/step - loss: 1.6620\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3166 - val_loss: 3.7630\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1182 - val_loss: 2.7475\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3206 - val_loss: 2.0768\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8004 - val_loss: 1.6480\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4666 - val_loss: 1.3745\n",
- "73/73 [==============================] - 0s 777us/step - loss: 1.3071\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.1250 - val_loss: 5.8585\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2140 - val_loss: 5.0181\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4914 - val_loss: 4.3381\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9010 - val_loss: 3.7762\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4132 - val_loss: 3.3111\n",
- "73/73 [==============================] - 0s 715us/step - loss: 3.0906\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1080 - val_loss: 4.9837\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4769 - val_loss: 4.4024\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9592 - val_loss: 3.9200\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5278 - val_loss: 3.5171\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1632 - val_loss: 3.1757\n",
- "73/73 [==============================] - 0s 842us/step - loss: 2.9912\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4720 - val_loss: 5.3090\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6994 - val_loss: 4.6036\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0962 - val_loss: 4.0425\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6100 - val_loss: 3.5849\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2125 - val_loss: 3.2082\n",
- "73/73 [==============================] - 0s 753us/step - loss: 3.0407\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4942 - val_loss: 4.3314\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7624 - val_loss: 3.7059\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1912 - val_loss: 3.2194\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7433 - val_loss: 2.8403\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3943 - val_loss: 2.5434\n",
- "73/73 [==============================] - 0s 754us/step - loss: 2.7792\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9944 - val_loss: 4.9636\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4056 - val_loss: 4.3921\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9035 - val_loss: 3.8990\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4698 - val_loss: 3.4700\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0928 - val_loss: 3.0957\n",
- "73/73 [==============================] - 0s 765us/step - loss: 3.0252\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0023 - val_loss: 0.9533\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8033 - val_loss: 0.7938\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7195 - val_loss: 0.7491\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6856 - val_loss: 0.7212\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6615 - val_loss: 0.6965\n",
- "73/73 [==============================] - 0s 744us/step - loss: 0.6045\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2450 - val_loss: 0.9491\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7618 - val_loss: 0.7292\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6564 - val_loss: 0.6806\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6204 - val_loss: 0.6501\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5950 - val_loss: 0.6274\n",
- "73/73 [==============================] - 0s 726us/step - loss: 0.5726\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2090 - val_loss: 1.0413\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8362 - val_loss: 0.7249\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6537 - val_loss: 0.6801\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6144 - val_loss: 0.6540\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5890 - val_loss: 0.6287\n",
- "73/73 [==============================] - 0s 775us/step - loss: 0.5801\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3889 - val_loss: 1.1377\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8420 - val_loss: 0.7974\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7043 - val_loss: 0.7268\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6557 - val_loss: 0.6920\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6232 - val_loss: 0.6650\n",
- "73/73 [==============================] - 0s 738us/step - loss: 0.6350\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9025 - val_loss: 1.1555\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8186 - val_loss: 0.8194\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6931 - val_loss: 0.7417\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6443 - val_loss: 0.6950\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6123 - val_loss: 0.6622\n",
- "73/73 [==============================] - 0s 759us/step - loss: 0.6224\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9533 - val_loss: 0.7139\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7184 - val_loss: 0.6025\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5380 - val_loss: 0.5395\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4826 - val_loss: 0.4921\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4485 - val_loss: 0.4574\n",
- "73/73 [==============================] - 0s 734us/step - loss: 0.3998\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2287 - val_loss: 0.6932\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6001 - val_loss: 0.6137\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5416 - val_loss: 0.5587\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4960 - val_loss: 0.5179\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4686 - val_loss: 0.4812\n",
- "73/73 [==============================] - 0s 935us/step - loss: 0.4532\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9267 - val_loss: 0.6546\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5586 - val_loss: 0.5487\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4945 - val_loss: 0.5146\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4687 - val_loss: 0.4833\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4487 - val_loss: 0.4622\n",
- "73/73 [==============================] - 0s 754us/step - loss: 0.4462\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8807 - val_loss: 0.6649\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5498 - val_loss: 0.5828\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5006 - val_loss: 0.5351\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4734 - val_loss: 0.5161\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4523 - val_loss: 0.4945\n",
- "73/73 [==============================] - 0s 683us/step - loss: 0.4653\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1786 - val_loss: 0.6675\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5539 - val_loss: 0.5520\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4869 - val_loss: 0.5067\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4525 - val_loss: 0.4721\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4284 - val_loss: 0.4444\n",
- "73/73 [==============================] - 0s 766us/step - loss: 0.4469\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7991 - val_loss: 1.7612\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5986 - val_loss: 0.6048\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5762 - val_loss: 0.4676\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4401 - val_loss: 0.4329\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4164 - val_loss: 0.4159\n",
- "73/73 [==============================] - 0s 755us/step - loss: 0.4005\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9572 - val_loss: 0.6219\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5170 - val_loss: 0.5151\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4572 - val_loss: 0.4713\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4272 - val_loss: 0.4421\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4037 - val_loss: 0.4118\n",
- "73/73 [==============================] - 0s 758us/step - loss: 0.3930\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3686 - val_loss: 0.8028\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9956 - val_loss: 0.4716\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4191 - val_loss: 0.4250\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4006 - val_loss: 0.4051\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3874 - val_loss: 0.4005\n",
- "73/73 [==============================] - 0s 770us/step - loss: 0.3902\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7477 - val_loss: 0.5826\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4865 - val_loss: 0.5033\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4655 - val_loss: 0.6109\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5462 - val_loss: 0.4520\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4133 - val_loss: 0.4261\n",
- "73/73 [==============================] - 0s 749us/step - loss: 0.4355\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4955 - val_loss: 1.1431\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2784 - val_loss: 0.4875\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4232 - val_loss: 0.4448\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3824 - val_loss: 0.4004\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3608 - val_loss: 0.3813\n",
- "73/73 [==============================] - 0s 738us/step - loss: 0.3868\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.9880 - val_loss: 5.7623\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2137 - val_loss: 5.1346\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6754 - val_loss: 4.6406\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2372 - val_loss: 4.2291\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8678 - val_loss: 3.8781\n",
- "73/73 [==============================] - 0s 732us/step - loss: 3.5569\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7701 - val_loss: 4.5420\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0600 - val_loss: 3.8634\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4736 - val_loss: 3.3011\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0006 - val_loss: 2.8689\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6321 - val_loss: 2.5144\n",
- "73/73 [==============================] - 0s 741us/step - loss: 2.4666\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.2465 - val_loss: 5.9153\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2110 - val_loss: 5.0936\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5468 - val_loss: 4.5148\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0572 - val_loss: 4.0692\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6687 - val_loss: 3.7055\n",
- "73/73 [==============================] - 0s 841us/step - loss: 3.5474\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9042 - val_loss: 3.6606\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2033 - val_loss: 3.0084\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6208 - val_loss: 2.4856\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1696 - val_loss: 2.0959\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8462 - val_loss: 1.8225\n",
- "73/73 [==============================] - 0s 768us/step - loss: 1.8580\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1809 - val_loss: 5.2159\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7321 - val_loss: 4.7815\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3322 - val_loss: 4.3933\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9754 - val_loss: 4.0465\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6573 - val_loss: 3.7380\n",
- "73/73 [==============================] - 0s 752us/step - loss: 3.6584\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9606 - val_loss: 3.9413\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5617 - val_loss: 3.5537\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2133 - val_loss: 3.2285\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9256 - val_loss: 2.9599\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6898 - val_loss: 2.7389\n",
- "73/73 [==============================] - 0s 802us/step - loss: 2.6559\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6546 - val_loss: 3.3819\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7832 - val_loss: 2.5997\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1379 - val_loss: 2.0510\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.7024 - val_loss: 1.6962\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4298 - val_loss: 1.4806\n",
- "73/73 [==============================] - 0s 768us/step - loss: 1.3719\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7044 - val_loss: 4.7553\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4115 - val_loss: 4.4583\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1317 - val_loss: 4.1766\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8679 - val_loss: 3.9124\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6213 - val_loss: 3.6679\n",
- "73/73 [==============================] - 0s 789us/step - loss: 3.5700\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.4483 - val_loss: 6.3384\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.7673 - val_loss: 5.7199\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2470 - val_loss: 5.2353\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8259 - val_loss: 4.8348\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4692 - val_loss: 4.4917\n",
- "73/73 [==============================] - 0s 712us/step - loss: 4.1401\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1407 - val_loss: 5.2478\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8255 - val_loss: 4.9199\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5027 - val_loss: 4.5807\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1684 - val_loss: 4.2296\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8238 - val_loss: 3.8692\n",
- "73/73 [==============================] - 0s 756us/step - loss: 3.7946\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8164 - val_loss: 2.2268\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5699 - val_loss: 1.4041\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2547 - val_loss: 1.2807\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1635 - val_loss: 1.1822\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0655 - val_loss: 1.0599\n",
- "73/73 [==============================] - 0s 769us/step - loss: 0.9810\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1112 - val_loss: 0.9361\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9073 - val_loss: 0.8002\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7622 - val_loss: 0.7562\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7229 - val_loss: 0.7316\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6987 - val_loss: 0.7142\n",
- "73/73 [==============================] - 0s 736us/step - loss: 0.6631\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0735 - val_loss: 2.7662\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0523 - val_loss: 1.8406\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5535 - val_loss: 1.5643\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3983 - val_loss: 1.4638\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3375 - val_loss: 1.4213\n",
- "73/73 [==============================] - 0s 733us/step - loss: 1.3532\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1647 - val_loss: 1.2594\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8901 - val_loss: 0.7461\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7112 - val_loss: 0.6847\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6512 - val_loss: 0.6600\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6202 - val_loss: 0.6429\n",
- "73/73 [==============================] - 0s 760us/step - loss: 0.6105\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6196 - val_loss: 2.1105\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2773 - val_loss: 1.0128\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8684 - val_loss: 0.8572\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7730 - val_loss: 0.7800\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7122 - val_loss: 0.7340\n",
- "73/73 [==============================] - 0s 767us/step - loss: 0.7272\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1645 - val_loss: 1.4047\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3185 - val_loss: 1.3768\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3059 - val_loss: 1.3599\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2536 - val_loss: 1.2030\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9006 - val_loss: 0.7378\n",
- "73/73 [==============================] - 0s 745us/step - loss: 0.6701\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8391 - val_loss: 1.0291\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7378 - val_loss: 0.6757\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6283 - val_loss: 0.6389\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5868 - val_loss: 0.6022\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5633 - val_loss: 0.5759\n",
- "73/73 [==============================] - 0s 725us/step - loss: 0.5503\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3896 - val_loss: 0.8116\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5921 - val_loss: 0.5399\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4832 - val_loss: 0.4902\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4633 - val_loss: 0.4758\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4485 - val_loss: 0.4555\n",
- "73/73 [==============================] - 0s 728us/step - loss: 0.4475\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8986 - val_loss: 1.5373\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2718 - val_loss: 1.2268\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1360 - val_loss: 1.1021\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9994 - val_loss: 0.9501\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8440 - val_loss: 0.7985\n",
- "73/73 [==============================] - 0s 743us/step - loss: 0.7443\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8063 - val_loss: 1.7672\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.2334 - val_loss: 1.2109\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9533 - val_loss: 0.8573\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7108 - val_loss: 0.6874\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6012 - val_loss: 0.5960\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.5926\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1771 - val_loss: 0.8257\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6659 - val_loss: 0.5984\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5285 - val_loss: 0.5065\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4763 - val_loss: 0.4782\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4529 - val_loss: 0.4741\n",
- "73/73 [==============================] - 0s 755us/step - loss: 0.4219\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5939 - val_loss: 0.9120\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6828 - val_loss: 0.6495\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5929 - val_loss: 0.6132\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5457 - val_loss: 0.5562\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5004 - val_loss: 0.5157\n",
- "73/73 [==============================] - 0s 774us/step - loss: 0.4834\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9915 - val_loss: 0.6667\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5703 - val_loss: 0.5541\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4845 - val_loss: 0.4962\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4528 - val_loss: 0.4982\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4361 - val_loss: 0.4585\n",
- "73/73 [==============================] - 0s 729us/step - loss: 0.4401\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0619 - val_loss: 0.7947\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6585 - val_loss: 0.6640\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5914 - val_loss: 0.6046\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5141 - val_loss: 0.5454\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4708 - val_loss: 0.4902\n",
- "73/73 [==============================] - 0s 736us/step - loss: 0.4912\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6543 - val_loss: 1.3844\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3007 - val_loss: 1.3839\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2982 - val_loss: 1.3854\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2926 - val_loss: 1.3732\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2319 - val_loss: 1.1939\n",
- "73/73 [==============================] - 0s 780us/step - loss: 1.1303\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.7917 - val_loss: 5.5066\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8560 - val_loss: 4.7270\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1973 - val_loss: 4.1366\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6845 - val_loss: 3.6708\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2759 - val_loss: 3.2976\n",
- "73/73 [==============================] - 0s 701us/step - loss: 2.9728\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9083 - val_loss: 4.7492\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0715 - val_loss: 3.9193\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2992 - val_loss: 3.1821\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6500 - val_loss: 2.5896\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1446 - val_loss: 2.1322\n",
- "73/73 [==============================] - 0s 777us/step - loss: 1.9510\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8912 - val_loss: 4.6190\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0104 - val_loss: 3.7542\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2130 - val_loss: 2.9729\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5034 - val_loss: 2.3048\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9377 - val_loss: 1.8098\n",
- "73/73 [==============================] - 0s 774us/step - loss: 1.7352\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5316 - val_loss: 4.3711\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6231 - val_loss: 3.5695\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9017 - val_loss: 2.9258\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3273 - val_loss: 2.4130\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8888 - val_loss: 2.0205\n",
- "73/73 [==============================] - 0s 728us/step - loss: 2.0817\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8721 - val_loss: 4.6714\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0584 - val_loss: 3.9194\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4054 - val_loss: 3.3343\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9067 - val_loss: 2.8892\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5348 - val_loss: 2.5585\n",
- "73/73 [==============================] - 0s 763us/step - loss: 2.5073\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7243 - val_loss: 4.7440\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3244 - val_loss: 4.3444\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9538 - val_loss: 3.9732\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6101 - val_loss: 3.6294\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2937 - val_loss: 3.3129\n",
- "73/73 [==============================] - 0s 705us/step - loss: 2.9149\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0703 - val_loss: 5.0427\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5272 - val_loss: 4.5287\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0533 - val_loss: 4.0586\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6127 - val_loss: 3.6163\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1983 - val_loss: 3.1995\n",
- "73/73 [==============================] - 0s 760us/step - loss: 3.0800\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6851 - val_loss: 4.5879\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1190 - val_loss: 4.0380\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6336 - val_loss: 3.5667\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2192 - val_loss: 3.1651\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.8675 - val_loss: 2.8312\n",
- "73/73 [==============================] - 0s 755us/step - loss: 2.6997\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4760 - val_loss: 5.4169\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9283 - val_loss: 4.8717\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4226 - val_loss: 4.3805\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9710 - val_loss: 3.9409\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5678 - val_loss: 3.5484\n",
- "73/73 [==============================] - 0s 777us/step - loss: 3.2222\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8757 - val_loss: 5.9164\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4443 - val_loss: 5.5145\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0767 - val_loss: 5.1648\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7543 - val_loss: 4.8552\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4664 - val_loss: 4.5752\n",
- "73/73 [==============================] - 0s 847us/step - loss: 4.4622\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8548 - val_loss: 1.0768\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9701 - val_loss: 0.8759\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8118 - val_loss: 0.8077\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7587 - val_loss: 0.7710\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7263 - val_loss: 0.7434\n",
- "73/73 [==============================] - 0s 796us/step - loss: 0.6879\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3203 - val_loss: 1.2681\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0524 - val_loss: 0.9230\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8676 - val_loss: 0.8473\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8041 - val_loss: 0.8130\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7672 - val_loss: 0.7900\n",
- "73/73 [==============================] - 0s 786us/step - loss: 0.7414\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0079 - val_loss: 1.2676\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9810 - val_loss: 0.8294\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7474 - val_loss: 0.7407\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.6849 - val_loss: 0.7044\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6510 - val_loss: 0.6769\n",
- "73/73 [==============================] - 0s 759us/step - loss: 0.6535\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5609 - val_loss: 1.0983\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9663 - val_loss: 0.7983\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7570 - val_loss: 0.7465\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7131 - val_loss: 0.7205\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6837 - val_loss: 0.6961\n",
- "73/73 [==============================] - 0s 719us/step - loss: 0.6847\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5413 - val_loss: 1.5157\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9893 - val_loss: 0.8520\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7465 - val_loss: 0.7559\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6857 - val_loss: 0.7235\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6615 - val_loss: 0.7037\n",
- "73/73 [==============================] - 0s 761us/step - loss: 0.6941\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4185 - val_loss: 0.6902\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5879 - val_loss: 0.5830\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5355 - val_loss: 0.5440\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5050 - val_loss: 0.5140\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4823 - val_loss: 0.4859\n",
- "73/73 [==============================] - 0s 758us/step - loss: 0.4416\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3205 - val_loss: 0.7835\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6445 - val_loss: 0.6327\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5660 - val_loss: 0.5760\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5259 - val_loss: 0.5444\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5085 - val_loss: 0.5290\n",
- "73/73 [==============================] - 0s 737us/step - loss: 0.4999\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3146 - val_loss: 0.7413\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6855 - val_loss: 0.7386\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5709 - val_loss: 0.5905\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5327 - val_loss: 0.5569\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5035 - val_loss: 0.5270\n",
- "73/73 [==============================] - 0s 795us/step - loss: 0.4928\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5669 - val_loss: 0.7950\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6954 - val_loss: 0.6713\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5902 - val_loss: 0.6095\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5351 - val_loss: 0.5577\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5012 - val_loss: 0.5367\n",
- "73/73 [==============================] - 0s 723us/step - loss: 0.5204\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4189 - val_loss: 0.8067\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6699 - val_loss: 0.6762\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5838 - val_loss: 0.5925\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5286 - val_loss: 0.5424\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4895 - val_loss: 0.5176\n",
- "73/73 [==============================] - 0s 781us/step - loss: 0.5051\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8700 - val_loss: 0.6013\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5352 - val_loss: 0.5694\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4747 - val_loss: 0.4876\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5306 - val_loss: 0.6161\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5256 - val_loss: 0.4948\n",
- "73/73 [==============================] - 0s 698us/step - loss: 0.4264\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3430 - val_loss: 0.9737\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6794 - val_loss: 0.6473\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5394 - val_loss: 0.5385\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4644 - val_loss: 0.4713\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4255 - val_loss: 0.4483\n",
- "73/73 [==============================] - 0s 770us/step - loss: 0.4232\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.9522 - val_loss: 0.5819\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5049 - val_loss: 0.5152\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4507 - val_loss: 0.4787\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4191 - val_loss: 0.4356\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4099 - val_loss: 0.4782\n",
- "73/73 [==============================] - 0s 769us/step - loss: 0.4518\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8503 - val_loss: 0.6028\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5124 - val_loss: 0.4812\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4491 - val_loss: 0.4503\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4296 - val_loss: 0.4807\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4181 - val_loss: 0.4303\n",
- "73/73 [==============================] - 0s 786us/step - loss: 0.4351\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7041 - val_loss: 0.5026\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4537 - val_loss: 0.4562\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4266 - val_loss: 0.5293\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4232 - val_loss: 0.4389\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3985 - val_loss: 0.4347\n",
- "73/73 [==============================] - 0s 845us/step - loss: 0.4432\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4321 - val_loss: 4.0923\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5260 - val_loss: 3.2200\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7483 - val_loss: 2.4906\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1210 - val_loss: 1.9278\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6664 - val_loss: 1.5521\n",
- "73/73 [==============================] - 0s 781us/step - loss: 1.6628\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2358 - val_loss: 4.9881\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3008 - val_loss: 4.1395\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5633 - val_loss: 3.4276\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9315 - val_loss: 2.8350\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.4018 - val_loss: 2.3065\n",
- "73/73 [==============================] - 0s 818us/step - loss: 2.2094\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.2980 - val_loss: 3.7346\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0664 - val_loss: 2.7511\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3307 - val_loss: 2.1660\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8981 - val_loss: 1.8161\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6396 - val_loss: 1.6028\n",
- "73/73 [==============================] - 0s 773us/step - loss: 1.5083\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8935 - val_loss: 5.1293\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2542 - val_loss: 3.7806\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1549 - val_loss: 2.8201\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3597 - val_loss: 2.1546\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8199 - val_loss: 1.7272\n",
- "73/73 [==============================] - 0s 818us/step - loss: 1.7360\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1310 - val_loss: 4.2771\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3557 - val_loss: 2.9178\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3694 - val_loss: 2.1440\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8242 - val_loss: 1.7344\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5293 - val_loss: 1.5075\n",
- "73/73 [==============================] - 0s 775us/step - loss: 1.3935\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2488 - val_loss: 5.0350\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5001 - val_loss: 4.3541\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9170 - val_loss: 3.8163\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4524 - val_loss: 3.3839\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0762 - val_loss: 3.0316\n",
- "73/73 [==============================] - 0s 771us/step - loss: 2.7984\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0998 - val_loss: 5.0259\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4961 - val_loss: 4.4406\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9670 - val_loss: 3.9189\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4932 - val_loss: 3.4478\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0657 - val_loss: 3.0211\n",
- "73/73 [==============================] - 0s 752us/step - loss: 2.9453\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.5333 - val_loss: 5.3007\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6258 - val_loss: 4.4978\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9411 - val_loss: 3.8734\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3986 - val_loss: 3.3748\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9716 - val_loss: 2.9850\n",
- "73/73 [==============================] - 0s 778us/step - loss: 2.8356\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.6609 - val_loss: 5.4999\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0125 - val_loss: 4.9175\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4936 - val_loss: 4.4305\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0459 - val_loss: 3.9985\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6400 - val_loss: 3.6020\n",
- "73/73 [==============================] - 0s 768us/step - loss: 3.3525\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5816 - val_loss: 4.5968\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1501 - val_loss: 4.1635\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7429 - val_loss: 3.7533\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3596 - val_loss: 3.3686\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0028 - val_loss: 3.0107\n",
- "73/73 [==============================] - 0s 768us/step - loss: 2.9379\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1063 - val_loss: 1.3336\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0773 - val_loss: 1.0099\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8682 - val_loss: 0.8611\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7651 - val_loss: 0.7760\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7061 - val_loss: 0.7249\n",
- "73/73 [==============================] - 0s 810us/step - loss: 0.6433\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6956 - val_loss: 1.2067\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9746 - val_loss: 0.8711\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7953 - val_loss: 0.7796\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.7263 - val_loss: 0.7387\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6883 - val_loss: 0.7117\n",
- "73/73 [==============================] - 0s 823us/step - loss: 0.6568\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9465 - val_loss: 0.9631\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7787 - val_loss: 0.7944\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6959 - val_loss: 0.7343\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6613 - val_loss: 0.6995\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6373 - val_loss: 0.6716\n",
- "73/73 [==============================] - 0s 767us/step - loss: 0.6202\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1517 - val_loss: 1.5213\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1584 - val_loss: 1.1266\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9213 - val_loss: 0.9497\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8054 - val_loss: 0.8517\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7365 - val_loss: 0.7903\n",
- "73/73 [==============================] - 0s 759us/step - loss: 0.7672\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1020 - val_loss: 1.1096\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9260 - val_loss: 0.8256\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7213 - val_loss: 0.7451\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6662 - val_loss: 0.7047\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6375 - val_loss: 0.6834\n",
- "73/73 [==============================] - 0s 818us/step - loss: 0.6531\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2426 - val_loss: 0.7222\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6078 - val_loss: 0.6015\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5371 - val_loss: 0.5525\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4924 - val_loss: 0.5019\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4585 - val_loss: 0.4687\n",
- "73/73 [==============================] - 0s 827us/step - loss: 0.4070\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1237 - val_loss: 0.6358\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5595 - val_loss: 0.5574\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4957 - val_loss: 0.5184\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4621 - val_loss: 0.4803\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4386 - val_loss: 0.4552\n",
- "73/73 [==============================] - 0s 785us/step - loss: 0.4386\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2753 - val_loss: 0.6914\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5911 - val_loss: 0.5660\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5103 - val_loss: 0.4981\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4599 - val_loss: 0.4571\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4301 - val_loss: 0.4516\n",
- "73/73 [==============================] - 0s 848us/step - loss: 0.4486\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.6190 - val_loss: 0.8127\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6327 - val_loss: 0.6364\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5491 - val_loss: 0.5778\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5029 - val_loss: 0.5331\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4679 - val_loss: 0.4893\n",
- "73/73 [==============================] - 0s 955us/step - loss: 0.4766\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.0793 - val_loss: 0.7095\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6015 - val_loss: 0.6126\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5305 - val_loss: 0.5503\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4877 - val_loss: 0.5056\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4545 - val_loss: 0.4873\n",
- "73/73 [==============================] - 0s 781us/step - loss: 0.4746\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3182 - val_loss: 0.8138\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2858 - val_loss: 0.6439\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7415 - val_loss: 0.4850\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4420 - val_loss: 0.4239\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3981 - val_loss: 0.3875\n",
- "73/73 [==============================] - 0s 782us/step - loss: 0.3638\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8665 - val_loss: 0.5844\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4757 - val_loss: 0.4769\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4328 - val_loss: 0.4539\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4186 - val_loss: 0.4185\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4038 - val_loss: 0.4857\n",
- "73/73 [==============================] - 0s 786us/step - loss: 0.4802\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9001 - val_loss: 0.5798\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5173 - val_loss: 0.4661\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4239 - val_loss: 0.4287\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4030 - val_loss: 0.4171\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3875 - val_loss: 0.3909\n",
- "73/73 [==============================] - 0s 792us/step - loss: 0.3829\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8028 - val_loss: 0.5519\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4774 - val_loss: 0.4744\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4325 - val_loss: 0.4432\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4083 - val_loss: 0.4202\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3933 - val_loss: 0.4209\n",
- "73/73 [==============================] - 0s 796us/step - loss: 0.4104\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8573 - val_loss: 0.5585\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4738 - val_loss: 0.4443\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4111 - val_loss: 0.4215\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3901 - val_loss: 0.4426\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3777 - val_loss: 0.3919\n",
- "73/73 [==============================] - 0s 798us/step - loss: 0.3917\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1141 - val_loss: 3.5747\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.8839 - val_loss: 2.5261\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0667 - val_loss: 1.8818\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5968 - val_loss: 1.5333\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3491 - val_loss: 1.3440\n",
- "73/73 [==============================] - 0s 769us/step - loss: 1.3081\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8441 - val_loss: 4.7844\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7908 - val_loss: 3.3553\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7841 - val_loss: 2.5822\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.2166 - val_loss: 2.1028\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8254 - val_loss: 1.7699\n",
- "73/73 [==============================] - 0s 817us/step - loss: 1.6087\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8614 - val_loss: 5.4655\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6531 - val_loss: 4.3750\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7168 - val_loss: 3.4835\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9447 - val_loss: 2.7421\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3265 - val_loss: 2.1625\n",
- "73/73 [==============================] - 0s 853us/step - loss: 2.0609\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.4010 - val_loss: 3.7329\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9500 - val_loss: 2.5677\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0370 - val_loss: 1.8859\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5229 - val_loss: 1.5248\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2568 - val_loss: 1.3283\n",
- "73/73 [==============================] - 0s 855us/step - loss: 1.4225\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.9055 - val_loss: 4.2814\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4277 - val_loss: 3.0351\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4407 - val_loss: 2.1992\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8022 - val_loss: 1.6755\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4239 - val_loss: 1.3782\n",
- "73/73 [==============================] - 0s 880us/step - loss: 1.2844\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1431 - val_loss: 5.0661\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6194 - val_loss: 4.5511\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1399 - val_loss: 4.0791\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7000 - val_loss: 3.6475\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2990 - val_loss: 3.2564\n",
- "73/73 [==============================] - 0s 764us/step - loss: 2.9494\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2728 - val_loss: 5.1928\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5973 - val_loss: 4.5492\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0175 - val_loss: 3.9949\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5177 - val_loss: 3.5193\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0899 - val_loss: 3.1145\n",
- "73/73 [==============================] - 0s 874us/step - loss: 2.9492\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.3614 - val_loss: 5.0930\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4551 - val_loss: 4.2498\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7167 - val_loss: 3.5631\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1198 - val_loss: 3.0094\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6447 - val_loss: 2.5734\n",
- "73/73 [==============================] - 0s 888us/step - loss: 2.4536\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.2307 - val_loss: 4.1582\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7868 - val_loss: 3.7423\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4009 - val_loss: 3.3811\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0655 - val_loss: 3.0710\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7788 - val_loss: 2.8097\n",
- "73/73 [==============================] - 0s 828us/step - loss: 2.7479\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8661 - val_loss: 5.4317\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6532 - val_loss: 4.3866\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7803 - val_loss: 3.5986\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1205 - val_loss: 2.9956\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6163 - val_loss: 2.5264\n",
- "73/73 [==============================] - 0s 876us/step - loss: 2.4779\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.2261 - val_loss: 0.9583\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8043 - val_loss: 0.8115\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7319 - val_loss: 0.7635\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6973 - val_loss: 0.7310\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6703 - val_loss: 0.7025\n",
- "73/73 [==============================] - 0s 816us/step - loss: 0.6313\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5034 - val_loss: 1.1041\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9015 - val_loss: 0.8057\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6911 - val_loss: 0.7080\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6269 - val_loss: 0.6614\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5910 - val_loss: 0.6327\n",
- "73/73 [==============================] - 0s 813us/step - loss: 0.5782\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.7573 - val_loss: 0.9562\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7707 - val_loss: 0.7619\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6746 - val_loss: 0.7049\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6322 - val_loss: 0.6683\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6008 - val_loss: 0.6372\n",
- "73/73 [==============================] - 0s 819us/step - loss: 0.5852\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.3063 - val_loss: 1.2280\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8922 - val_loss: 0.7676\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6798 - val_loss: 0.6833\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6241 - val_loss: 0.6524\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5948 - val_loss: 0.6346\n",
- "73/73 [==============================] - 0s 763us/step - loss: 0.6080\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.4504 - val_loss: 1.1537\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9448 - val_loss: 0.8474\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7427 - val_loss: 0.7520\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6787 - val_loss: 0.7123\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6458 - val_loss: 0.6847\n",
- "73/73 [==============================] - 0s 830us/step - loss: 0.6783\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 2ms/step - loss: 1.0933 - val_loss: 0.6732\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6431 - val_loss: 0.6026\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5387 - val_loss: 0.5419\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4936 - val_loss: 0.4938\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4602 - val_loss: 0.4644\n",
- "73/73 [==============================] - 0s 913us/step - loss: 0.4152\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.1063 - val_loss: 0.8657\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5982 - val_loss: 0.5560\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4924 - val_loss: 0.5038\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 0.4548 - val_loss: 0.4688\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4277 - val_loss: 0.4545\n",
- "73/73 [==============================] - 0s 797us/step - loss: 0.4458\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5650 - val_loss: 0.7463\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6417 - val_loss: 0.6208\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5449 - val_loss: 0.5523\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4925 - val_loss: 0.4965\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4490 - val_loss: 0.4607\n",
- "73/73 [==============================] - 0s 1000us/step - loss: 0.4394\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.9929 - val_loss: 0.6093\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5291 - val_loss: 0.5298\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4567 - val_loss: 0.4904\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4287 - val_loss: 0.4588\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4139 - val_loss: 0.4450\n",
- "73/73 [==============================] - 0s 748us/step - loss: 0.4505\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0812 - val_loss: 0.6582\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5624 - val_loss: 0.5579\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4931 - val_loss: 0.5225\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4539 - val_loss: 0.4722\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4441 - val_loss: 0.4554\n",
- "73/73 [==============================] - 0s 760us/step - loss: 0.4435\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7786 - val_loss: 0.5408\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4915 - val_loss: 0.4941\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4460 - val_loss: 0.4519\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4183 - val_loss: 0.4295\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4007 - val_loss: 0.4090\n",
- "73/73 [==============================] - 0s 798us/step - loss: 0.3579\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1188 - val_loss: 1.0100\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1253 - val_loss: 0.4988\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5964 - val_loss: 0.4494\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4318 - val_loss: 0.4240\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3866 - val_loss: 0.4208\n",
- "73/73 [==============================] - 0s 799us/step - loss: 0.3965\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0682 - val_loss: 0.6272\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5248 - val_loss: 0.5101\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4620 - val_loss: 0.4543\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4179 - val_loss: 0.4229\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4049 - val_loss: 0.4211\n",
- "73/73 [==============================] - 0s 785us/step - loss: 0.4030\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1009 - val_loss: 0.7491\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9054 - val_loss: 0.5879\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5744 - val_loss: 1.0128\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2589 - val_loss: 0.4474\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4114 - val_loss: 0.4455\n",
- "73/73 [==============================] - 0s 904us/step - loss: 0.4309\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8623 - val_loss: 0.6990\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6174 - val_loss: 0.4897\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4349 - val_loss: 0.4553\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.4001 - val_loss: 0.4073\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3823 - val_loss: 0.3919\n",
- "73/73 [==============================] - 0s 874us/step - loss: 0.4008\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 6.3013 - val_loss: 5.7589\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1249 - val_loss: 4.9927\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4889 - val_loss: 4.4043\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9310 - val_loss: 3.8428\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3990 - val_loss: 3.3286\n",
- "73/73 [==============================] - 0s 872us/step - loss: 3.0450\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 5.6495 - val_loss: 5.5200\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9507 - val_loss: 4.9279\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4357 - val_loss: 4.4535\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0094 - val_loss: 4.0501\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6432 - val_loss: 3.6985\n",
- "73/73 [==============================] - 0s 793us/step - loss: 3.5603\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 5.3373 - val_loss: 5.1403\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4719 - val_loss: 4.3037\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6983 - val_loss: 3.5647\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0572 - val_loss: 2.9824\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5636 - val_loss: 2.5391\n",
- "73/73 [==============================] - 0s 895us/step - loss: 2.4208\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 6.4834 - val_loss: 5.6793\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8349 - val_loss: 4.5092\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9290 - val_loss: 3.7470\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2870 - val_loss: 3.1649\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7816 - val_loss: 2.6934\n",
- "73/73 [==============================] - 0s 844us/step - loss: 2.4276\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.3311 - val_loss: 5.3507\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8511 - val_loss: 4.9022\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4468 - val_loss: 4.5162\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0957 - val_loss: 4.1770\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7860 - val_loss: 3.8764\n",
- "73/73 [==============================] - 0s 821us/step - loss: 3.7849\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 5.3911 - val_loss: 5.3873\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.9861 - val_loss: 4.9873\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6055 - val_loss: 4.6125\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2501 - val_loss: 4.2620\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9193 - val_loss: 3.9388\n",
- "73/73 [==============================] - 0s 732us/step - loss: 3.6123\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 3ms/step - loss: 5.5293 - val_loss: 5.5240\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0536 - val_loss: 5.1001\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6797 - val_loss: 4.7466\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3571 - val_loss: 4.4317\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0642 - val_loss: 4.1392\n",
- "73/73 [==============================] - 0s 888us/step - loss: 4.0325\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1841 - val_loss: 5.1848\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6986 - val_loss: 4.7079\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2596 - val_loss: 4.2800\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8662 - val_loss: 3.8965\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5141 - val_loss: 3.5534\n",
- "73/73 [==============================] - 0s 960us/step - loss: 3.4113\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.7287 - val_loss: 5.6310\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1762 - val_loss: 5.1137\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7019 - val_loss: 4.6683\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2917 - val_loss: 4.2787\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9323 - val_loss: 3.9353\n",
- "73/73 [==============================] - 0s 808us/step - loss: 3.6054\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 5.5706 - val_loss: 5.6552\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1842 - val_loss: 5.2904\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8508 - val_loss: 4.9642\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5446 - val_loss: 4.6556\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2481 - val_loss: 4.3469\n",
- "73/73 [==============================] - 0s 899us/step - loss: 4.2459\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.7815 - val_loss: 1.3474\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1558 - val_loss: 1.0436\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9509 - val_loss: 0.9115\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8164 - val_loss: 0.8253\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7588 - val_loss: 0.7850\n",
- "73/73 [==============================] - 0s 921us/step - loss: 0.7184\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7473 - val_loss: 2.0229\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3204 - val_loss: 1.1725\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0402 - val_loss: 1.0226\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9047 - val_loss: 0.8877\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7979 - val_loss: 0.8043\n",
- "73/73 [==============================] - 0s 788us/step - loss: 0.7757\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2130 - val_loss: 1.2914\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1067 - val_loss: 1.0467\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9310 - val_loss: 0.9050\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8237 - val_loss: 0.8164\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7445 - val_loss: 0.7477\n",
- "73/73 [==============================] - 0s 806us/step - loss: 0.7259\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8627 - val_loss: 2.7832\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.1044 - val_loss: 1.8399\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5691 - val_loss: 1.5350\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.4011 - val_loss: 1.4344\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3485 - val_loss: 1.3994\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.2576\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2574 - val_loss: 1.2454\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0425 - val_loss: 0.9822\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8597 - val_loss: 0.8456\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7471 - val_loss: 0.7584\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.6779 - val_loss: 0.7159\n",
- "73/73 [==============================] - 0s 763us/step - loss: 0.6982\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6063 - val_loss: 0.9563\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7833 - val_loss: 0.7308\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6681 - val_loss: 0.6596\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6114 - val_loss: 0.6140\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5704 - val_loss: 0.5707\n",
- "73/73 [==============================] - 0s 826us/step - loss: 0.5110\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3129 - val_loss: 0.7344\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6429 - val_loss: 0.6443\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5796 - val_loss: 0.5974\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5417 - val_loss: 0.5664\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5143 - val_loss: 0.5434\n",
- "73/73 [==============================] - 0s 749us/step - loss: 0.5032\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6273 - val_loss: 1.1466\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8452 - val_loss: 0.7011\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6058 - val_loss: 0.5820\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5097 - val_loss: 0.4980\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4585 - val_loss: 0.4616\n",
- "73/73 [==============================] - 0s 814us/step - loss: 0.4293\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9481 - val_loss: 1.1985\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9156 - val_loss: 0.7770\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6906 - val_loss: 0.7080\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6333 - val_loss: 0.6558\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5943 - val_loss: 0.6224\n",
- "73/73 [==============================] - 0s 777us/step - loss: 0.6007\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5283 - val_loss: 1.0011\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8318 - val_loss: 0.7538\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6750 - val_loss: 0.6752\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6013 - val_loss: 0.6110\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5507 - val_loss: 0.5656\n",
- "73/73 [==============================] - 0s 833us/step - loss: 0.5598\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0966 - val_loss: 0.7408\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6507 - val_loss: 0.6474\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5789 - val_loss: 0.5892\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5334 - val_loss: 0.5373\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4910 - val_loss: 0.5109\n",
- "73/73 [==============================] - 0s 808us/step - loss: 0.4498\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3416 - val_loss: 0.6886\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5824 - val_loss: 0.5943\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4919 - val_loss: 0.5130\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4395 - val_loss: 0.4550\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4179 - val_loss: 0.4339\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4090\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 2s 6ms/step - loss: 0.9098 - val_loss: 0.7025\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.5895 - val_loss: 0.5666\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4770 - val_loss: 0.4795\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4287 - val_loss: 0.5119\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4126 - val_loss: 0.4287\n",
- "73/73 [==============================] - 0s 800us/step - loss: 0.4060\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8611 - val_loss: 0.6640\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5389 - val_loss: 4.0906\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.4844 - val_loss: 0.4656\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4273 - val_loss: 0.4678\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 0.4154 - val_loss: 0.4393\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 0.4407\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.5652 - val_loss: 1.2856\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8777 - val_loss: 0.6851\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6127 - val_loss: 0.6236\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5360 - val_loss: 0.5387\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4947 - val_loss: 0.5119\n",
- "73/73 [==============================] - 0s 883us/step - loss: 0.5119\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 6.2815 - val_loss: 5.8696\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2052 - val_loss: 5.0919\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5904 - val_loss: 4.5599\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1326 - val_loss: 4.1366\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7566 - val_loss: 3.7805\n",
- "73/73 [==============================] - 0s 809us/step - loss: 3.4556\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1626 - val_loss: 4.9619\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2879 - val_loss: 4.0761\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4177 - val_loss: 3.1874\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6382 - val_loss: 2.4648\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0553 - val_loss: 1.9711\n",
- "73/73 [==============================] - 0s 785us/step - loss: 1.8437\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8162 - val_loss: 4.3934\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6430 - val_loss: 3.3615\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7633 - val_loss: 2.6008\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 2.1290 - val_loss: 2.0789\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 1.7092 - val_loss: 1.7428\n",
- "73/73 [==============================] - 0s 855us/step - loss: 1.5776\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.0626 - val_loss: 4.6340\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8428 - val_loss: 3.3945\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.8159 - val_loss: 2.5003\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.1188 - val_loss: 1.9421\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 1.7170 - val_loss: 1.6501\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 1.5723\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6103 - val_loss: 5.4771\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8104 - val_loss: 4.7596\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1947 - val_loss: 4.1711\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6711 - val_loss: 3.6550\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 3.2036 - val_loss: 3.1872\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.1116\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 6.0842 - val_loss: 5.8855\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2507 - val_loss: 5.1372\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6145 - val_loss: 4.5471\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 4.1047 - val_loss: 4.0676\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6863 - val_loss: 3.6688\n",
- "73/73 [==============================] - 0s 1ms/step - loss: 3.3478\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2607 - val_loss: 5.0887\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5092 - val_loss: 4.3717\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8565 - val_loss: 3.7410\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2836 - val_loss: 3.1843\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7845 - val_loss: 2.7036\n",
- "73/73 [==============================] - 0s 788us/step - loss: 2.6376\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2546 - val_loss: 5.3253\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9153 - val_loss: 4.9895\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5999 - val_loss: 4.6773\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3060 - val_loss: 4.3834\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0288 - val_loss: 4.1050\n",
- "73/73 [==============================] - 0s 910us/step - loss: 3.9560\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.6712 - val_loss: 5.7048\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 5.3128 - val_loss: 5.3599\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.9973 - val_loss: 5.0518\n",
- "Epoch 4/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 1s 3ms/step - loss: 4.7127 - val_loss: 4.7711\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4507 - val_loss: 4.5109\n",
- "73/73 [==============================] - 0s 767us/step - loss: 4.1631\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0911 - val_loss: 4.0414\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6222 - val_loss: 3.5913\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 3.2316 - val_loss: 3.2131\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.9007 - val_loss: 2.8942\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6237 - val_loss: 2.6286\n",
- "73/73 [==============================] - 0s 902us/step - loss: 2.4640\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9715 - val_loss: 0.9200\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7871 - val_loss: 0.7300\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6737 - val_loss: 0.6735\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6296 - val_loss: 0.6350\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 0.5985 - val_loss: 0.6077\n",
- "73/73 [==============================] - 0s 807us/step - loss: 0.5657\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7332 - val_loss: 1.5698\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2712 - val_loss: 1.1817\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9797 - val_loss: 0.8973\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7523 - val_loss: 0.7174\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6471 - val_loss: 0.6661\n",
- "73/73 [==============================] - 0s 816us/step - loss: 0.6276\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 2.6570 - val_loss: 1.7487\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3777 - val_loss: 1.2991\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1124 - val_loss: 1.0747\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9391 - val_loss: 0.9125\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8143 - val_loss: 0.8078\n",
- "73/73 [==============================] - 0s 785us/step - loss: 0.7731\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7348 - val_loss: 1.4765\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1625 - val_loss: 1.1437\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9672 - val_loss: 0.9821\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8518 - val_loss: 0.8776\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7743 - val_loss: 0.8102\n",
- "73/73 [==============================] - 0s 801us/step - loss: 0.7489\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3529 - val_loss: 1.3884\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1067 - val_loss: 0.9939\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9236 - val_loss: 0.8744\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8257 - val_loss: 0.8059\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7538 - val_loss: 0.7608\n",
- "73/73 [==============================] - 0s 764us/step - loss: 0.7438\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1032 - val_loss: 0.6575\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5835 - val_loss: 0.5613\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5118 - val_loss: 0.5108\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4767 - val_loss: 0.4801\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4571 - val_loss: 0.4639\n",
- "73/73 [==============================] - 0s 815us/step - loss: 0.4166\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3559 - val_loss: 0.8263\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7389 - val_loss: 0.7271\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6579 - val_loss: 0.6601\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5941 - val_loss: 0.6058\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5478 - val_loss: 0.5684\n",
- "73/73 [==============================] - 0s 811us/step - loss: 0.5247\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6783 - val_loss: 1.2288\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9129 - val_loss: 0.7413\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6655 - val_loss: 0.6729\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6131 - val_loss: 0.6273\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5714 - val_loss: 0.5821\n",
- "73/73 [==============================] - 0s 803us/step - loss: 0.5535\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2879 - val_loss: 0.8117\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6771 - val_loss: 0.6789\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5949 - val_loss: 0.6125\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5496 - val_loss: 0.5674\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5103 - val_loss: 0.5310\n",
- "73/73 [==============================] - 0s 742us/step - loss: 0.5254\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8752 - val_loss: 0.5577\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4914 - val_loss: 0.5044\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4559 - val_loss: 0.4679\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4321 - val_loss: 0.4639\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4174 - val_loss: 0.4495\n",
- "73/73 [==============================] - 0s 761us/step - loss: 0.4507\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9477 - val_loss: 0.6377\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5449 - val_loss: 0.5340\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4696 - val_loss: 0.4722\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4608 - val_loss: 0.5270\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4435 - val_loss: 0.4458\n",
- "73/73 [==============================] - 0s 809us/step - loss: 0.4035\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7668 - val_loss: 0.5660\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4922 - val_loss: 0.5190\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4928 - val_loss: 0.4735\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4284 - val_loss: 0.4385\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4066 - val_loss: 0.4424\n",
- "73/73 [==============================] - 0s 784us/step - loss: 0.4197\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9284 - val_loss: 0.5801\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5115 - val_loss: 0.5188\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4733 - val_loss: 0.4776\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4373 - val_loss: 0.4539\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4194 - val_loss: 0.4276\n",
- "73/73 [==============================] - 0s 730us/step - loss: 0.4150\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0626 - val_loss: 0.5508\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4793 - val_loss: 0.4605\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4268 - val_loss: 0.4409\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4026 - val_loss: 0.4066\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3897 - val_loss: 0.4155\n",
- "73/73 [==============================] - 0s 748us/step - loss: 0.4110\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2784 - val_loss: 0.7612\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5864 - val_loss: 0.5595\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4915 - val_loss: 0.5030\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4468 - val_loss: 0.4685\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4165 - val_loss: 0.4279\n",
- "73/73 [==============================] - 0s 782us/step - loss: 0.4290\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9371 - val_loss: 4.6894\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0600 - val_loss: 3.7815\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2163 - val_loss: 2.9661\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4913 - val_loss: 2.2945\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9238 - val_loss: 1.8019\n",
- "73/73 [==============================] - 0s 744us/step - loss: 1.6316\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.8375 - val_loss: 5.6362\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0092 - val_loss: 4.9306\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3940 - val_loss: 4.3509\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8743 - val_loss: 3.8614\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4377 - val_loss: 3.4476\n",
- "73/73 [==============================] - 0s 862us/step - loss: 3.3255\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9759 - val_loss: 4.7916\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.1281 - val_loss: 3.9506\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3538 - val_loss: 3.1669\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6259 - val_loss: 2.4511\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0386 - val_loss: 1.9271\n",
- "73/73 [==============================] - 0s 903us/step - loss: 1.7830\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4325 - val_loss: 3.8219\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1094 - val_loss: 2.7308\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2000 - val_loss: 2.0279\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6315 - val_loss: 1.6520\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3275 - val_loss: 1.4663\n",
- "73/73 [==============================] - 0s 793us/step - loss: 1.6378\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.0869 - val_loss: 3.7319\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1193 - val_loss: 2.8999\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4533 - val_loss: 2.3178\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0165 - val_loss: 1.9623\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.7559 - val_loss: 1.7491\n",
- "73/73 [==============================] - 0s 806us/step - loss: 1.6231\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 2ms/step - loss: 5.1664 - val_loss: 5.1030\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6720 - val_loss: 4.6178\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2207 - val_loss: 4.1746\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8074 - val_loss: 3.7682\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4290 - val_loss: 3.3985\n",
- "73/73 [==============================] - 0s 795us/step - loss: 3.1035\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.0166 - val_loss: 5.5802\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7776 - val_loss: 4.5192\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9017 - val_loss: 3.7250\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.2220 - val_loss: 3.0839\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6756 - val_loss: 2.5711\n",
- "73/73 [==============================] - 0s 768us/step - loss: 2.4867\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4434 - val_loss: 5.2485\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5123 - val_loss: 4.3123\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6942 - val_loss: 3.5131\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0165 - val_loss: 2.8602\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.4742 - val_loss: 2.3453\n",
- "73/73 [==============================] - 0s 760us/step - loss: 2.2334\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.3227 - val_loss: 5.1978\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7438 - val_loss: 4.6406\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2253 - val_loss: 4.1376\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.7565 - val_loss: 3.6787\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3281 - val_loss: 3.2587\n",
- "73/73 [==============================] - 0s 757us/step - loss: 3.0075\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.6666 - val_loss: 5.7201\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.2248 - val_loss: 5.3056\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8551 - val_loss: 4.9493\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.5315 - val_loss: 4.6310\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2401 - val_loss: 4.3405\n",
- "73/73 [==============================] - 0s 793us/step - loss: 4.2490\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7997 - val_loss: 1.6501\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3973 - val_loss: 1.3409\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1599 - val_loss: 1.0921\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9079 - val_loss: 0.8049\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6927 - val_loss: 0.6544\n",
- "73/73 [==============================] - 0s 803us/step - loss: 0.6152\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6487 - val_loss: 1.3596\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0703 - val_loss: 0.9311\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7962 - val_loss: 0.7387\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6686 - val_loss: 0.6662\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6169 - val_loss: 0.6439\n",
- "73/73 [==============================] - 0s 735us/step - loss: 0.5928\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2719 - val_loss: 1.2279\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0016 - val_loss: 0.8730\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7864 - val_loss: 0.7710\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7165 - val_loss: 0.7285\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6785 - val_loss: 0.6995\n",
- "73/73 [==============================] - 0s 733us/step - loss: 0.6663\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2156 - val_loss: 1.4413\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0867 - val_loss: 0.8911\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7237 - val_loss: 0.6792\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6057 - val_loss: 0.6232\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5600 - val_loss: 0.5879\n",
- "73/73 [==============================] - 0s 749us/step - loss: 0.5722\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6005 - val_loss: 1.2742\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0069 - val_loss: 0.9386\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8379 - val_loss: 0.8460\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7713 - val_loss: 0.7948\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7299 - val_loss: 0.7609\n",
- "73/73 [==============================] - 0s 799us/step - loss: 0.7603\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1858 - val_loss: 0.7471\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6326 - val_loss: 0.6372\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5705 - val_loss: 0.5735\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5218 - val_loss: 0.5324\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4867 - val_loss: 0.4955\n",
- "73/73 [==============================] - 0s 810us/step - loss: 0.4433\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2401 - val_loss: 0.6763\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5773 - val_loss: 0.5786\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5061 - val_loss: 0.5134\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4800 - val_loss: 0.4791\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4337 - val_loss: 0.4505\n",
- "73/73 [==============================] - 0s 829us/step - loss: 0.4331\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0934 - val_loss: 0.6417\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5383 - val_loss: 0.4981\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4561 - val_loss: 0.4645\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4288 - val_loss: 0.4454\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4108 - val_loss: 0.4257\n",
- "73/73 [==============================] - 0s 764us/step - loss: 0.4131\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3462 - val_loss: 0.6799\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5891 - val_loss: 0.6265\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5313 - val_loss: 0.5565\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4904 - val_loss: 0.5141\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4598 - val_loss: 0.4770\n",
- "73/73 [==============================] - 0s 730us/step - loss: 0.4786\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0841 - val_loss: 0.6720\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5812 - val_loss: 0.5870\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5172 - val_loss: 0.5331\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4688 - val_loss: 0.4948\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4430 - val_loss: 0.4565\n",
- "73/73 [==============================] - 0s 822us/step - loss: 0.4480\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9568 - val_loss: 0.5939\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5135 - val_loss: 0.4955\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4699 - val_loss: 0.4599\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4333 - val_loss: 0.4295\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4062 - val_loss: 0.4118\n",
- "73/73 [==============================] - 0s 856us/step - loss: 0.3633\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7367 - val_loss: 0.5581\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4635 - val_loss: 0.4780\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4197 - val_loss: 0.4290\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4007 - val_loss: 0.4019\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3878 - val_loss: 0.4003\n",
- "73/73 [==============================] - 0s 771us/step - loss: 0.3965\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0118 - val_loss: 0.5843\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4891 - val_loss: 0.4795\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4323 - val_loss: 0.4583\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4018 - val_loss: 0.4223\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3855 - val_loss: 0.4107\n",
- "73/73 [==============================] - 0s 766us/step - loss: 0.3947\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8421 - val_loss: 0.5637\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4724 - val_loss: 0.4849\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4231 - val_loss: 0.4400\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4043 - val_loss: 0.4176\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3900 - val_loss: 0.4057\n",
- "73/73 [==============================] - 0s 770us/step - loss: 0.4130\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9421 - val_loss: 0.5976\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4795 - val_loss: 0.4711\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4108 - val_loss: 0.4365\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3857 - val_loss: 0.3944\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3764 - val_loss: 0.4734\n",
- "73/73 [==============================] - 0s 792us/step - loss: 0.4805\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1226 - val_loss: 4.8427\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2120 - val_loss: 3.9700\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.4064 - val_loss: 3.1738\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6846 - val_loss: 2.4814\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0833 - val_loss: 1.9258\n",
- "73/73 [==============================] - 0s 772us/step - loss: 1.7926\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9386 - val_loss: 4.4433\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.6643 - val_loss: 3.3120\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.7013 - val_loss: 2.4452\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0273 - val_loss: 1.8993\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.6428 - val_loss: 1.6118\n",
- "73/73 [==============================] - 0s 817us/step - loss: 1.4589\n",
- "Epoch 1/5\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8066 - val_loss: 4.2130\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3039 - val_loss: 2.8527\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.2011 - val_loss: 1.9228\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.5465 - val_loss: 1.4534\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.2385 - val_loss: 1.2450\n",
- "73/73 [==============================] - 0s 769us/step - loss: 1.0902\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1400 - val_loss: 4.8425\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2102 - val_loss: 3.9364\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3653 - val_loss: 3.1008\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6069 - val_loss: 2.3818\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9888 - val_loss: 1.8328\n",
- "73/73 [==============================] - 0s 797us/step - loss: 1.6850\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.7017 - val_loss: 4.4679\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8174 - val_loss: 3.5983\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.0371 - val_loss: 2.8370\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3840 - val_loss: 2.2256\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.8937 - val_loss: 1.7944\n",
- "73/73 [==============================] - 0s 783us/step - loss: 1.7399\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 6.4060 - val_loss: 5.8144\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.9339 - val_loss: 4.5489\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9202 - val_loss: 3.6587\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1834 - val_loss: 2.9946\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.6369 - val_loss: 2.5051\n",
- "73/73 [==============================] - 0s 761us/step - loss: 2.4104\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.4875 - val_loss: 5.4503\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 1s 2ms/step - loss: 4.9220 - val_loss: 4.9081\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4276 - val_loss: 4.4201\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9750 - val_loss: 3.9686\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.5547 - val_loss: 3.5472\n",
- "73/73 [==============================] - 0s 765us/step - loss: 3.4474\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.6257 - val_loss: 5.6028\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.1078 - val_loss: 5.1239\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.6758 - val_loss: 4.7036\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.2877 - val_loss: 4.3166\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.9267 - val_loss: 3.9512\n",
- "73/73 [==============================] - 0s 807us/step - loss: 3.8029\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.7281 - val_loss: 5.5692\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.0263 - val_loss: 4.8897\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.4077 - val_loss: 4.2781\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8456 - val_loss: 3.7189\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3284 - val_loss: 3.2043\n",
- "73/73 [==============================] - 0s 834us/step - loss: 2.9475\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 5.5883 - val_loss: 5.4816\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.8871 - val_loss: 4.8369\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 4.3170 - val_loss: 4.2917\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.8244 - val_loss: 3.8086\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.3839 - val_loss: 3.3738\n",
- "73/73 [==============================] - 0s 769us/step - loss: 3.3017\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.3146 - val_loss: 1.1778\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8873 - val_loss: 0.7858\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6941 - val_loss: 0.7040\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6462 - val_loss: 0.6728\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6211 - val_loss: 0.6479\n",
- "73/73 [==============================] - 0s 794us/step - loss: 0.5664\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.5020 - val_loss: 1.0313\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8088 - val_loss: 0.7115\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6434 - val_loss: 0.6479\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5974 - val_loss: 0.6170\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5683 - val_loss: 0.5921\n",
- "73/73 [==============================] - 0s 751us/step - loss: 0.5555\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 2.0897 - val_loss: 0.8365\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6956 - val_loss: 0.6964\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6270 - val_loss: 0.6552\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5952 - val_loss: 0.6269\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5708 - val_loss: 0.6030\n",
- "73/73 [==============================] - 0s 828us/step - loss: 0.5542\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 3.1561 - val_loss: 1.2809\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0264 - val_loss: 0.8961\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7903 - val_loss: 0.7505\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6835 - val_loss: 0.6897\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6280 - val_loss: 0.6581\n",
- "73/73 [==============================] - 0s 837us/step - loss: 0.6230\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.9692 - val_loss: 0.9936\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7718 - val_loss: 0.7343\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.6364 - val_loss: 0.6621\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5856 - val_loss: 0.6187\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5528 - val_loss: 0.5922\n",
- "73/73 [==============================] - 0s 778us/step - loss: 0.5798\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0973 - val_loss: 0.6307\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5624 - val_loss: 0.5529\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5066 - val_loss: 0.5035\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4665 - val_loss: 0.4688\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4362 - val_loss: 0.4720\n",
- "73/73 [==============================] - 0s 817us/step - loss: 0.4205\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0686 - val_loss: 0.6908\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5946 - val_loss: 0.5710\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5093 - val_loss: 0.5047\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4572 - val_loss: 0.4585\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4262 - val_loss: 0.4433\n",
- "73/73 [==============================] - 0s 798us/step - loss: 0.4275\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.1227 - val_loss: 0.7027\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5751 - val_loss: 0.5824\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4987 - val_loss: 0.5099\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4569 - val_loss: 0.4724\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4282 - val_loss: 0.4401\n",
- "73/73 [==============================] - 0s 779us/step - loss: 0.4202\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.3362 - val_loss: 0.6359\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5624 - val_loss: 0.5943\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5819 - val_loss: 0.5202\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4860 - val_loss: 0.4772\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4429 - val_loss: 0.4553\n",
- "73/73 [==============================] - 0s 896us/step - loss: 0.4583\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 1.0628 - val_loss: 0.6888\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.5495 - val_loss: 0.5319\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4531 - val_loss: 0.4723\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4088 - val_loss: 0.4239\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3857 - val_loss: 0.4092\n",
- "73/73 [==============================] - 0s 782us/step - loss: 0.4066\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9645 - val_loss: 0.5424\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4844 - val_loss: 0.4623\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4253 - val_loss: 0.4155\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3982 - val_loss: 0.4078\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3823 - val_loss: 0.4521\n",
- "73/73 [==============================] - 0s 746us/step - loss: 0.4314\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.9178 - val_loss: 0.5626\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4787 - val_loss: 0.4673\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4256 - val_loss: 0.4214\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3978 - val_loss: 0.3964\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3774 - val_loss: 0.3914\n",
- "73/73 [==============================] - 0s 757us/step - loss: 0.3849\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.7389 - val_loss: 0.5297\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4580 - val_loss: 0.4932\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4165 - val_loss: 0.4136\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3978 - val_loss: 0.4246\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3865 - val_loss: 0.4346\n",
- "73/73 [==============================] - 0s 750us/step - loss: 0.4057\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8434 - val_loss: 0.5559\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4721 - val_loss: 0.4607\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4149 - val_loss: 0.4158\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3888 - val_loss: 0.4170\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3753 - val_loss: 0.3879\n",
- "73/73 [==============================] - 0s 765us/step - loss: 0.3910\n",
- "Epoch 1/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.8391 - val_loss: 0.5323\n",
- "Epoch 2/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4518 - val_loss: 0.4936\n",
- "Epoch 3/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.4083 - val_loss: 0.4271\n",
- "Epoch 4/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3850 - val_loss: 0.4405\n",
- "Epoch 5/5\n",
- "291/291 [==============================] - 0s 1ms/step - loss: 0.3731 - val_loss: 0.3860\n",
- "73/73 [==============================] - 0s 749us/step - loss: 0.3935\n",
- "Epoch 1/5\n",
- "363/363 [==============================] - 0s 1ms/step - loss: 0.6946 - val_loss: 0.5043\n",
- "Epoch 2/5\n",
- "363/363 [==============================] - 0s 1ms/step - loss: 0.4602 - val_loss: 0.4307\n",
- "Epoch 3/5\n",
- "363/363 [==============================] - 0s 1ms/step - loss: 0.4124 - val_loss: 0.4057\n",
- "Epoch 4/5\n",
- "363/363 [==============================] - 0s 1ms/step - loss: 0.3900 - val_loss: 0.3942\n",
- "Epoch 5/5\n",
- "363/363 [==============================] - 0s 1ms/step - loss: 0.3799 - val_loss: 0.3794\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "GridSearchCV(estimator=<tensorflow.python.keras.wrappers.scikit_learn.KerasRegressor object at 0x7f73c6ff9048>,\n",
- " param_grid={'hidden_layers': [1, 2, 3, 4],\n",
- " 'layer_size': [5, 10, 20, 30],\n",
- " 'learning_rate': [0.0001, 5e-05, 0.001, 0.005, 0.01]})"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "#scipy也是sk中的\n",
- "from scipy.stats import reciprocal\n",
- "# 分布函数\n",
- "# f(x) = 1/(x*log(b/a)) a <= x <= b\n",
- "\n",
- "#sk 0.21.3版本可以用这种列表\n",
- "# param_distribution = {\n",
- "# \"hidden_layers\":[1, 2, 3, 4],\n",
- "# \"layer_size\": np.arange(1, 100),\n",
- "# \"learning_rate\": reciprocal(1e-4, 1e-2),\n",
- "# }\n",
- "#最新版本只能用普通列表\n",
- "param_distribution = {\n",
- " \"hidden_layers\": [1, 2, 3, 4],\n",
- " \"layer_size\": [5, 10, 20, 30],\n",
- " \"learning_rate\": [1e-4, 5e-5, 1e-3, 5e-3, 1e-2],\n",
- "}\n",
- "\n",
- "from sklearn.model_selection import RandomizedSearchCV,GridSearchCV\n",
- "\n",
- "#随机搜索\n",
- "# random_search_cv = RandomizedSearchCV(sklearn_model,\n",
- "# param_distribution)\n",
- "grid_search_cv =GridSearchCV(sklearn_model,param_distribution)\n",
- "# random_search_cv.fit(x_train_scaled, y_train, epochs = 5,\n",
- "# validation_data = (x_valid_scaled, y_valid),\n",
- "# callbacks = callbacks)\n",
- "\n",
- "grid_search_cv.fit(x_train_scaled, y_train, epochs = 5,\n",
- " validation_data = (x_valid_scaled, y_valid),\n",
- " callbacks = callbacks)\n",
- "# cross_validation: 训练集分成n份,n-1训练,最后一份验证."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'hidden_layers': 3, 'layer_size': 30, 'learning_rate': 0.01}\n",
- "-0.3978272318840027\n",
- "<tensorflow.python.keras.wrappers.scikit_learn.KerasRegressor object at 0x7f738bb95400>\n"
- ]
- }
- ],
- "source": [
- "# print(random_search_cv.best_params_)\n",
- "# print(random_search_cv.best_score_)\n",
- "# print(random_search_cv.best_estimator_)\n",
- "\n",
- "print(grid_search_cv.best_params_)\n",
- "print(grid_search_cv.best_score_)\n",
- "print(grid_search_cv.best_estimator_)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "162/162 [==============================] - 0s 770us/step - loss: 0.3876\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "0.38763508200645447"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "#拿最佳的模型\n",
- "# model = random_search_cv.best_estimator_.model\n",
- "\n",
- "# model.evaluate(x_test_scaled, y_test)\n",
- "\n",
- "model = grid_search_cv.best_estimator_.model\n",
- "model.evaluate(x_test_scaled, y_test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|