You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 37 kB

3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from copy import deepcopy
  8. from pathlib import Path
  9. from threading import Thread
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  30. from utils.google_utils import attempt_download
  31. from utils.loss import ComputeLoss, ComputeLossOTA
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
  34. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  35. logger = logging.getLogger(__name__)
  36. def train(hyp, opt, device, tb_writer=None):
  37. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  38. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  39. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  40. # Directories
  41. wdir = save_dir / 'weights'
  42. wdir.mkdir(parents=True, exist_ok=True) # make dir
  43. last = wdir / 'last.pt'
  44. best = wdir / 'best.pt'
  45. results_file = save_dir / 'results.txt'
  46. ##f
  47. # Save run settings
  48. with open(save_dir / 'hyp.yaml', 'w') as f:
  49. yaml.dump(hyp, f, sort_keys=False)
  50. with open(save_dir / 'opt.yaml', 'w') as f:
  51. yaml.dump(vars(opt), f, sort_keys=False)
  52. # Configure
  53. plots = not opt.evolve # create plots
  54. cuda = device.type != 'cpu'
  55. init_seeds(2 + rank)
  56. with open(opt.data) as f:
  57. data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
  58. is_coco = opt.data.endswith('coco.yaml')
  59. # Logging- Doing this before checking the dataset. Might update data_dict
  60. loggers = {'wandb': None} # loggers dict
  61. if rank in [-1, 0]:
  62. opt.hyp = hyp # add hyperparameters
  63. #,map_location=torch.device('cpu')
  64. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  65. wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
  66. loggers['wandb'] = wandb_logger.wandb
  67. data_dict = wandb_logger.data_dict
  68. if wandb_logger.wandb:
  69. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
  70. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  71. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  72. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  73. # Model
  74. pretrained = weights.endswith('.pt')
  75. if pretrained:
  76. with torch_distributed_zero_first(rank):
  77. attempt_download(weights) # download if not found locally
  78. ckpt = torch.load(weights, map_location=device) # load checkpoint
  79. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  80. exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
  81. state_dict = ckpt['model'].float().state_dict() # to FP32
  82. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  83. model.load_state_dict(state_dict, strict=False) # load
  84. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  85. else:
  86. model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  87. with torch_distributed_zero_first(rank):
  88. check_dataset(data_dict) # check
  89. train_path = data_dict['train']
  90. test_path = data_dict['val']
  91. # Freeze
  92. freeze = [] # parameter names to freeze (full or partial)
  93. for k, v in model.named_parameters():
  94. v.requires_grad = True # train all layers
  95. if any(x in k for x in freeze):
  96. print('freezing %s' % k)
  97. v.requires_grad = False
  98. # Optimizer
  99. nbs = 64 # nominal batch size = 64
  100. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  101. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  102. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  103. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  104. for k, v in model.named_modules():
  105. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  106. pg2.append(v.bias) # biases
  107. if isinstance(v, nn.BatchNorm2d):
  108. pg0.append(v.weight) # no decay
  109. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  110. pg1.append(v.weight) # apply decay
  111. if hasattr(v, 'im'):
  112. if hasattr(v.im, 'implicit'):
  113. pg0.append(v.im.implicit)
  114. else:
  115. for iv in v.im:
  116. pg0.append(iv.implicit)
  117. if hasattr(v, 'imc'):
  118. if hasattr(v.imc, 'implicit'):
  119. pg0.append(v.imc.implicit)
  120. else:
  121. for iv in v.imc:
  122. pg0.append(iv.implicit)
  123. if hasattr(v, 'imb'):
  124. if hasattr(v.imb, 'implicit'):
  125. pg0.append(v.imb.implicit)
  126. else:
  127. for iv in v.imb:
  128. pg0.append(iv.implicit)
  129. if hasattr(v, 'imo'):
  130. if hasattr(v.imo, 'implicit'):
  131. pg0.append(v.imo.implicit)
  132. else:
  133. for iv in v.imo:
  134. pg0.append(iv.implicit)
  135. if hasattr(v, 'ia'):
  136. if hasattr(v.ia, 'implicit'):
  137. pg0.append(v.ia.implicit)
  138. else:
  139. for iv in v.ia:
  140. pg0.append(iv.implicit)
  141. if hasattr(v, 'attn'):
  142. if hasattr(v.attn, 'logit_scale'):
  143. pg0.append(v.attn.logit_scale)
  144. if hasattr(v.attn, 'q_bias'):
  145. pg0.append(v.attn.q_bias)
  146. if hasattr(v.attn, 'v_bias'):
  147. pg0.append(v.attn.v_bias)
  148. if hasattr(v.attn, 'relative_position_bias_table'):
  149. pg0.append(v.attn.relative_position_bias_table)
  150. if hasattr(v, 'rbr_dense'):
  151. if hasattr(v.rbr_dense, 'weight_rbr_origin'):
  152. pg0.append(v.rbr_dense.weight_rbr_origin)
  153. if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
  154. pg0.append(v.rbr_dense.weight_rbr_avg_conv)
  155. if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
  156. pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
  157. if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
  158. pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
  159. if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
  160. pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
  161. if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
  162. pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
  163. if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
  164. pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
  165. if hasattr(v.rbr_dense, 'vector'):
  166. pg0.append(v.rbr_dense.vector)
  167. if opt.adam:
  168. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  169. else:
  170. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  171. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  172. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  173. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  174. del pg0, pg1, pg2
  175. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  176. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  177. if opt.linear_lr:
  178. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  179. else:
  180. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  181. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  182. # plot_lr_scheduler(optimizer, scheduler, epochs)
  183. # EMA
  184. ema = ModelEMA(model) if rank in [-1, 0] else None
  185. # Resume
  186. start_epoch, best_fitness = 0, 0.0
  187. if pretrained:
  188. # Optimizer
  189. if ckpt['optimizer'] is not None:
  190. optimizer.load_state_dict(ckpt['optimizer'])
  191. best_fitness = ckpt['best_fitness']
  192. # EMA
  193. if ema and ckpt.get('ema'):
  194. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  195. ema.updates = ckpt['updates']
  196. # Results
  197. if ckpt.get('training_results') is not None:
  198. results_file.write_text(ckpt['training_results']) # write results.txt
  199. # Epochs
  200. start_epoch = ckpt['epoch'] + 1
  201. if opt.resume:
  202. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  203. if epochs < start_epoch:
  204. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  205. (weights, ckpt['epoch'], epochs))
  206. epochs += ckpt['epoch'] # finetune additional epochs
  207. del ckpt, state_dict
  208. # Image sizes
  209. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  210. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  211. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  212. # DP mode
  213. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  214. model = torch.nn.DataParallel(model)
  215. # SyncBatchNorm
  216. if opt.sync_bn and cuda and rank != -1:
  217. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  218. logger.info('Using SyncBatchNorm()')
  219. # Trainloader
  220. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  221. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  222. world_size=opt.world_size, workers=opt.workers,
  223. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  224. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  225. nb = len(dataloader) # number of batches
  226. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  227. # Process 0
  228. if rank in [-1, 0]:
  229. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
  230. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  231. world_size=opt.world_size, workers=opt.workers,
  232. pad=0.5, prefix=colorstr('val: '))[0]
  233. if not opt.resume:
  234. labels = np.concatenate(dataset.labels, 0)
  235. c = torch.tensor(labels[:, 0]) # classes
  236. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  237. # model._initialize_biases(cf.to(device))
  238. if plots:
  239. #plot_labels(labels, names, save_dir, loggers)
  240. if tb_writer:
  241. tb_writer.add_histogram('classes', c, 0)
  242. # Anchors
  243. if not opt.noautoanchor:
  244. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  245. model.half().float() # pre-reduce anchor precision
  246. # DDP mode
  247. if cuda and rank != -1:
  248. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
  249. # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
  250. find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
  251. # Model parameters
  252. hyp['box'] *= 3. / nl # scale to layers
  253. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  254. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  255. hyp['label_smoothing'] = opt.label_smoothing
  256. model.nc = nc # attach number of classes to model
  257. model.hyp = hyp # attach hyperparameters to model
  258. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  259. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  260. model.names = names
  261. # Start training
  262. t0 = time.time()
  263. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  264. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  265. maps = np.zeros(nc) # mAP per class
  266. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  267. scheduler.last_epoch = start_epoch - 1 # do not move
  268. scaler = amp.GradScaler(enabled=cuda)
  269. compute_loss_ota = ComputeLossOTA(model) # init loss class
  270. compute_loss = ComputeLoss(model) # init loss class
  271. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  272. f'Using {dataloader.num_workers} dataloader workers\n'
  273. f'Logging results to {save_dir}\n'
  274. f'Starting training for {epochs} epochs...')
  275. torch.save(model, wdir / 'init.pt')
  276. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  277. model.train()
  278. # Update image weights (optional)
  279. if opt.image_weights:
  280. # Generate indices
  281. if rank in [-1, 0]:
  282. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  283. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  284. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  285. # Broadcast if DDP
  286. if rank != -1:
  287. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  288. dist.broadcast(indices, 0)
  289. if rank != 0:
  290. dataset.indices = indices.cpu().numpy()
  291. # Update mosaic border
  292. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  293. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  294. mloss = torch.zeros(4, device=device) # mean losses
  295. if rank != -1:
  296. dataloader.sampler.set_epoch(epoch)
  297. pbar = enumerate(dataloader)
  298. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  299. if rank in [-1, 0]:
  300. pbar = tqdm(pbar, total=nb) # progress bar
  301. optimizer.zero_grad()
  302. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  303. ni = i + nb * epoch # number integrated batches (since train start)
  304. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  305. # Warmup
  306. if ni <= nw:
  307. xi = [0, nw] # x interp
  308. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  309. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  310. for j, x in enumerate(optimizer.param_groups):
  311. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  312. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  313. if 'momentum' in x:
  314. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  315. # Multi-scale
  316. if opt.multi_scale:
  317. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  318. sf = sz / max(imgs.shape[2:]) # scale factor
  319. if sf != 1:
  320. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  321. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  322. # Forward-propagation
  323. with amp.autocast(enabled=cuda):
  324. pred = model(imgs) # forward
  325. loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
  326. if rank != -1:
  327. loss *= opt.world_size # gradient averaged between devices in DDP mode
  328. if opt.quad:
  329. loss *= 4.
  330. # Backward-propagation
  331. scaler.scale(loss).backward()
  332. # Optimize
  333. if ni % accumulate == 0:
  334. scaler.step(optimizer) # optimizer.step
  335. scaler.update()
  336. optimizer.zero_grad()
  337. if ema:
  338. ema.update(model)
  339. # Print
  340. if rank in [-1, 0]:
  341. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  342. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  343. s = ('%10s' * 2 + '%10.4g' * 6) % (
  344. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  345. pbar.set_description(s)
  346. # Plot
  347. if plots and ni < 10:
  348. f = save_dir / f'train_batch{ni}.jpg' # filename
  349. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  350. # if tb_writer:
  351. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  352. # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
  353. elif plots and ni == 10 and wandb_logger.wandb:
  354. wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
  355. save_dir.glob('train*.jpg') if x.exists()]})
  356. # end batch ------------------------------------------------------------------------------------------------
  357. # end epoch ----------------------------------------------------------------------------------------------------
  358. # Scheduler
  359. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  360. scheduler.step()
  361. # DDP process 0 or single-GPU
  362. if rank in [-1, 0]:
  363. # mAP
  364. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  365. final_epoch = epoch + 1 == epochs
  366. if not opt.notest or final_epoch: # Calculate mAP
  367. wandb_logger.current_epoch = epoch + 1
  368. results, maps, times = test.test(data_dict,
  369. batch_size=batch_size * 2,
  370. imgsz=imgsz_test,
  371. model=ema.ema,
  372. single_cls=opt.single_cls,
  373. dataloader=testloader,
  374. save_dir=save_dir,
  375. verbose=nc < 50 and final_epoch,
  376. plots=plots and final_epoch,
  377. wandb_logger=wandb_logger,
  378. compute_loss=compute_loss,
  379. is_coco=is_coco)
  380. # Write
  381. with open(results_file, 'a') as f:
  382. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  383. if len(opt.name) and opt.bucket:
  384. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  385. # Log
  386. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  387. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  388. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  389. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  390. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  391. if tb_writer:
  392. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  393. if wandb_logger.wandb:
  394. wandb_logger.log({tag: x}) # W&B
  395. # Update best mAP
  396. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  397. if fi > best_fitness:
  398. best_fitness = fi
  399. wandb_logger.end_epoch(best_result=best_fitness == fi)
  400. # Save model
  401. if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
  402. ckpt = {'epoch': epoch,
  403. 'best_fitness': best_fitness,
  404. 'training_results': results_file.read_text(),
  405. 'model': deepcopy(model.module if is_parallel(model) else model).half(),
  406. 'ema': deepcopy(ema.ema).half(),
  407. 'updates': ema.updates,
  408. 'optimizer': optimizer.state_dict(),
  409. 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
  410. # Save last, best and delete
  411. torch.save(ckpt, last)
  412. if best_fitness == fi:
  413. torch.save(ckpt, best)
  414. if (best_fitness == fi) and (epoch >= 200):
  415. torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
  416. if epoch == 0:
  417. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  418. elif ((epoch+1) % 25) == 0:
  419. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  420. elif epoch >= (epochs-5):
  421. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  422. if wandb_logger.wandb:
  423. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  424. wandb_logger.log_model(
  425. last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  426. del ckpt
  427. # end epoch
  428. # ----------------------------------------------------------------------------------------------------
  429. # end training
  430. if rank in [-1, 0]:
  431. # Plots
  432. if plots:
  433. plot_results(save_dir=save_dir) # save as results.png
  434. if wandb_logger.wandb:
  435. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  436. wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
  437. if (save_dir / f).exists()]})
  438. # Test best.pt
  439. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  440. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  441. for m in (last, best) if best.exists() else (last): # speed, mAP tests
  442. results, _, _ = test.test(opt.data,
  443. batch_size=batch_size * 2,
  444. imgsz=imgsz_test,
  445. conf_thres=0.001,
  446. iou_thres=0.7,
  447. model=attempt_load(m, device).half(),
  448. single_cls=opt.single_cls,
  449. dataloader=testloader,
  450. save_dir=save_dir,
  451. save_json=True,
  452. plots=False,
  453. is_coco=is_coco)
  454. # Strip optimizers
  455. final = best if best.exists() else last # final model
  456. for f in last, best:
  457. if f.exists():
  458. strip_optimizer(f) # strip optimizers
  459. if opt.bucket:
  460. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  461. if wandb_logger.wandb and not opt.evolve: # Log the stripped model
  462. wandb_logger.wandb.log_artifact(str(final), type='model',
  463. name='run_' + wandb_logger.wandb_run.id + '_model',
  464. aliases=['last', 'best', 'stripped'])
  465. wandb_logger.finish_run()
  466. else:
  467. dist.destroy_process_group()
  468. torch.cuda.empty_cache()
  469. return results
  470. if __name__ == '__main__':
  471. parser = argparse.ArgumentParser()
  472. parser.add_argument('--weights', type=str, default='yolov7.pt', help='initial weights path')
  473. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  474. parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')
  475. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
  476. parser.add_argument('--epochs', type=int, default=30)
  477. parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs')
  478. parser.add_argument('--img-size', nargs='+', type=int, default=[418, 418], help='[train, test] image sizes')
  479. parser.add_argument('--rect', action='store_true', help='rectangular training')
  480. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  481. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  482. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  483. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  484. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  485. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  486. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  487. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  488. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  489. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  490. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  491. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  492. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  493. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  494. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  495. parser.add_argument('--project', default='runs/train', help='save to project/name')
  496. parser.add_argument('--entity', default=None, help='W&B entity')
  497. parser.add_argument('--name', default='exp', help='save to project/name')
  498. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  499. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  500. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  501. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  502. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  503. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  504. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  505. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  506. opt = parser.parse_args()
  507. # Set DDP variables
  508. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  509. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  510. set_logging(opt.global_rank)
  511. #if opt.global_rank in [-1, 0]:
  512. # check_git_status()
  513. # check_requirements()
  514. # Resume
  515. wandb_run = check_wandb_resume(opt)
  516. if opt.resume and not wandb_run: # resume an interrupted run
  517. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  518. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  519. apriori = opt.global_rank, opt.local_rank
  520. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  521. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
  522. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  523. logger.info('Resuming training from %s' % ckpt)
  524. else:
  525. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  526. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  527. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  528. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  529. opt.name = 'evolve' if opt.evolve else opt.name
  530. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  531. # DDP mode
  532. opt.total_batch_size = opt.batch_size
  533. device = select_device(opt.device, batch_size=opt.batch_size)
  534. if opt.local_rank != -1:
  535. assert torch.cuda.device_count() > opt.local_rank
  536. torch.cuda.set_device(opt.local_rank)
  537. device = torch.device('cuda', opt.local_rank)
  538. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  539. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  540. opt.batch_size = opt.total_batch_size // opt.world_size
  541. # Hyperparameters
  542. with open(opt.hyp) as f:
  543. hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
  544. # Train
  545. logger.info(opt)
  546. if not opt.evolve:
  547. tb_writer = None # init loggers
  548. if opt.global_rank in [-1, 0]:
  549. prefix = colorstr('tensorboard: ')
  550. logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  551. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  552. train(hyp, opt, device, tb_writer)
  553. # Evolve hyperparameters (optional)
  554. else:
  555. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  556. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  557. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  558. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  559. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  560. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  561. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  562. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  563. 'box': (1, 0.02, 0.2), # box loss gain
  564. 'cls': (1, 0.2, 4.0), # cls loss gain
  565. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  566. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  567. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  568. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  569. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  570. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  571. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  572. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  573. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  574. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  575. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  576. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  577. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  578. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  579. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  580. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  581. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  582. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  583. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  584. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  585. opt.notest, opt.nosave = True, True # only test/save final epoch
  586. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  587. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  588. if opt.bucket:
  589. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  590. for _ in range(300): # generations to evolve
  591. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  592. # Select parent(s)
  593. parent = 'single' # parent selection method: 'single' or 'weighted'
  594. x = np.loadtxt('evolve.txt', ndmin=2)
  595. n = min(5, len(x)) # number of previous results to consider
  596. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  597. w = fitness(x) - fitness(x).min() # weights
  598. if parent == 'single' or len(x) == 1:
  599. # x = x[random.randint(0, n - 1)] # random selection
  600. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  601. elif parent == 'weighted':
  602. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  603. # Mutate
  604. mp, s = 0.8, 0.2 # mutation probability, sigma
  605. npr = np.random
  606. npr.seed(int(time.time()))
  607. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  608. ng = len(meta)
  609. v = np.ones(ng)
  610. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  611. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  612. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  613. hyp[k] = float(x[i + 7] * v[i]) # mutate
  614. # Constrain to limits
  615. for k, v in meta.items():
  616. hyp[k] = max(hyp[k], v[1]) # lower limit
  617. hyp[k] = min(hyp[k], v[2]) # upper limit
  618. hyp[k] = round(hyp[k], 5) # significant digits
  619. # Train mutation
  620. results = train(hyp.copy(), opt, device)
  621. # Write mutation results
  622. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  623. # Plot results
  624. plot_evolution(yaml_file)
  625. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  626. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
  627. # end

随着人工智能和大数据的发展,任一方面对自动化工具有着一定的需求,在当下疫情防控期间,使用mindspore来实现yolo模型来进行目标检测及语义分割,对视频或图片都可以进行口罩佩戴检测和行人社交距离检测,来对公共场所的疫情防控来实行自动化管理。