You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train_aux.py 37 kB

3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from copy import deepcopy
  8. from pathlib import Path
  9. from threading import Thread
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  30. from utils.google_utils import attempt_download
  31. from utils.loss import ComputeLoss, ComputeLossAuxOTA
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
  34. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  35. logger = logging.getLogger(__name__)
  36. def train(hyp, opt, device, tb_writer=None):
  37. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  38. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  39. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  40. # Directories
  41. wdir = save_dir / 'weights'
  42. wdir.mkdir(parents=True, exist_ok=True) # make dir
  43. last = wdir / 'last.pt'
  44. best = wdir / 'best.pt'
  45. results_file = save_dir / 'results.txt'
  46. # Save run settings
  47. with open(save_dir / 'hyp.yaml', 'w') as f:
  48. yaml.dump(hyp, f, sort_keys=False)
  49. with open(save_dir / 'opt.yaml', 'w') as f:
  50. yaml.dump(vars(opt), f, sort_keys=False)
  51. # Configure
  52. plots = not opt.evolve # create plots
  53. cuda = device.type != 'cpu'
  54. init_seeds(2 + rank)
  55. with open(opt.data) as f:
  56. data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
  57. is_coco = opt.data.endswith('coco.yaml')
  58. # Logging- Doing this before checking the dataset. Might update data_dict
  59. loggers = {'wandb': None} # loggers dict
  60. if rank in [-1, 0]:
  61. opt.hyp = hyp # add hyperparameters
  62. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  63. wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
  64. loggers['wandb'] = wandb_logger.wandb
  65. data_dict = wandb_logger.data_dict
  66. if wandb_logger.wandb:
  67. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
  68. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  69. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  70. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  71. # Model
  72. pretrained = weights.endswith('.pt')
  73. if pretrained:
  74. with torch_distributed_zero_first(rank):
  75. attempt_download(weights) # download if not found locally
  76. ckpt = torch.load(weights, map_location=device) # load checkpoint
  77. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  78. exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
  79. state_dict = ckpt['model'].float().state_dict() # to FP32
  80. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  81. model.load_state_dict(state_dict, strict=False) # load
  82. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  83. else:
  84. model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  85. with torch_distributed_zero_first(rank):
  86. check_dataset(data_dict) # check
  87. train_path = data_dict['train']
  88. test_path = data_dict['val']
  89. # Freeze
  90. freeze = [] # parameter names to freeze (full or partial)
  91. for k, v in model.named_parameters():
  92. v.requires_grad = True # train all layers
  93. if any(x in k for x in freeze):
  94. print('freezing %s' % k)
  95. v.requires_grad = False
  96. # Optimizer
  97. nbs = 64 # nominal batch size
  98. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  99. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  100. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  101. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  102. for k, v in model.named_modules():
  103. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  104. pg2.append(v.bias) # biases
  105. if isinstance(v, nn.BatchNorm2d):
  106. pg0.append(v.weight) # no decay
  107. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  108. pg1.append(v.weight) # apply decay
  109. if hasattr(v, 'im'):
  110. if hasattr(v.im, 'implicit'):
  111. pg0.append(v.im.implicit)
  112. else:
  113. for iv in v.im:
  114. pg0.append(iv.implicit)
  115. if hasattr(v, 'imc'):
  116. if hasattr(v.imc, 'implicit'):
  117. pg0.append(v.imc.implicit)
  118. else:
  119. for iv in v.imc:
  120. pg0.append(iv.implicit)
  121. if hasattr(v, 'imb'):
  122. if hasattr(v.imb, 'implicit'):
  123. pg0.append(v.imb.implicit)
  124. else:
  125. for iv in v.imb:
  126. pg0.append(iv.implicit)
  127. if hasattr(v, 'imo'):
  128. if hasattr(v.imo, 'implicit'):
  129. pg0.append(v.imo.implicit)
  130. else:
  131. for iv in v.imo:
  132. pg0.append(iv.implicit)
  133. if hasattr(v, 'ia'):
  134. if hasattr(v.ia, 'implicit'):
  135. pg0.append(v.ia.implicit)
  136. else:
  137. for iv in v.ia:
  138. pg0.append(iv.implicit)
  139. if hasattr(v, 'attn'):
  140. if hasattr(v.attn, 'logit_scale'):
  141. pg0.append(v.attn.logit_scale)
  142. if hasattr(v.attn, 'q_bias'):
  143. pg0.append(v.attn.q_bias)
  144. if hasattr(v.attn, 'v_bias'):
  145. pg0.append(v.attn.v_bias)
  146. if hasattr(v.attn, 'relative_position_bias_table'):
  147. pg0.append(v.attn.relative_position_bias_table)
  148. if hasattr(v, 'rbr_dense'):
  149. if hasattr(v.rbr_dense, 'weight_rbr_origin'):
  150. pg0.append(v.rbr_dense.weight_rbr_origin)
  151. if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
  152. pg0.append(v.rbr_dense.weight_rbr_avg_conv)
  153. if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
  154. pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
  155. if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
  156. pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
  157. if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
  158. pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
  159. if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
  160. pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
  161. if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
  162. pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
  163. if hasattr(v.rbr_dense, 'vector'):
  164. pg0.append(v.rbr_dense.vector)
  165. if opt.adam:
  166. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  167. else:
  168. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  169. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  170. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  171. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  172. del pg0, pg1, pg2
  173. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  174. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  175. if opt.linear_lr:
  176. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  177. else:
  178. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  179. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  180. # plot_lr_scheduler(optimizer, scheduler, epochs)
  181. # EMA
  182. ema = ModelEMA(model) if rank in [-1, 0] else None
  183. # Resume
  184. start_epoch, best_fitness = 0, 0.0
  185. if pretrained:
  186. # Optimizer
  187. if ckpt['optimizer'] is not None:
  188. optimizer.load_state_dict(ckpt['optimizer'])
  189. best_fitness = ckpt['best_fitness']
  190. # EMA
  191. if ema and ckpt.get('ema'):
  192. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  193. ema.updates = ckpt['updates']
  194. # Results
  195. if ckpt.get('training_results') is not None:
  196. results_file.write_text(ckpt['training_results']) # write results.txt
  197. # Epochs
  198. start_epoch = ckpt['epoch'] + 1
  199. if opt.resume:
  200. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  201. if epochs < start_epoch:
  202. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  203. (weights, ckpt['epoch'], epochs))
  204. epochs += ckpt['epoch'] # finetune additional epochs
  205. del ckpt, state_dict
  206. # Image sizes
  207. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  208. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  209. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  210. # DP mode
  211. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  212. model = torch.nn.DataParallel(model)
  213. # SyncBatchNorm
  214. if opt.sync_bn and cuda and rank != -1:
  215. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  216. logger.info('Using SyncBatchNorm()')
  217. # Trainloader
  218. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  219. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  220. world_size=opt.world_size, workers=opt.workers,
  221. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  222. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  223. nb = len(dataloader) # number of batches
  224. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  225. # Process 0
  226. if rank in [-1, 0]:
  227. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
  228. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  229. world_size=opt.world_size, workers=opt.workers,
  230. pad=0.5, prefix=colorstr('val: '))[0]
  231. if not opt.resume:
  232. labels = np.concatenate(dataset.labels, 0)
  233. c = torch.tensor(labels[:, 0]) # classes
  234. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  235. # model._initialize_biases(cf.to(device))
  236. if plots:
  237. #plot_labels(labels, names, save_dir, loggers)
  238. if tb_writer:
  239. tb_writer.add_histogram('classes', c, 0)
  240. # Anchors
  241. if not opt.noautoanchor:
  242. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  243. model.half().float() # pre-reduce anchor precision
  244. # DDP mode
  245. if cuda and rank != -1:
  246. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
  247. # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
  248. find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
  249. # Model parameters
  250. hyp['box'] *= 3. / nl # scale to layers
  251. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  252. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  253. hyp['label_smoothing'] = opt.label_smoothing
  254. model.nc = nc # attach number of classes to model
  255. model.hyp = hyp # attach hyperparameters to model
  256. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  257. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  258. model.names = names
  259. # Start training
  260. t0 = time.time()
  261. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  262. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  263. maps = np.zeros(nc) # mAP per class
  264. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  265. scheduler.last_epoch = start_epoch - 1 # do not move
  266. scaler = amp.GradScaler(enabled=cuda)
  267. compute_loss_ota = ComputeLossAuxOTA(model) # init loss class
  268. compute_loss = ComputeLoss(model) # init loss class
  269. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  270. f'Using {dataloader.num_workers} dataloader workers\n'
  271. f'Logging results to {save_dir}\n'
  272. f'Starting training for {epochs} epochs...')
  273. torch.save(model, wdir / 'init.pt')
  274. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  275. model.train()
  276. # Update image weights (optional)
  277. if opt.image_weights:
  278. # Generate indices
  279. if rank in [-1, 0]:
  280. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  281. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  282. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  283. # Broadcast if DDP
  284. if rank != -1:
  285. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  286. dist.broadcast(indices, 0)
  287. if rank != 0:
  288. dataset.indices = indices.cpu().numpy()
  289. # Update mosaic border
  290. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  291. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  292. mloss = torch.zeros(4, device=device) # mean losses
  293. if rank != -1:
  294. dataloader.sampler.set_epoch(epoch)
  295. pbar = enumerate(dataloader)
  296. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  297. if rank in [-1, 0]:
  298. pbar = tqdm(pbar, total=nb) # progress bar
  299. optimizer.zero_grad()
  300. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  301. ni = i + nb * epoch # number integrated batches (since train start)
  302. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  303. # Warmup
  304. if ni <= nw:
  305. xi = [0, nw] # x interp
  306. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  307. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  308. for j, x in enumerate(optimizer.param_groups):
  309. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  310. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  311. if 'momentum' in x:
  312. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  313. # Multi-scale
  314. if opt.multi_scale:
  315. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  316. sf = sz / max(imgs.shape[2:]) # scale factor
  317. if sf != 1:
  318. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  319. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  320. # Forward
  321. with amp.autocast(enabled=cuda):
  322. pred = model(imgs) # forward
  323. loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
  324. if rank != -1:
  325. loss *= opt.world_size # gradient averaged between devices in DDP mode
  326. if opt.quad:
  327. loss *= 4.
  328. # Backward
  329. scaler.scale(loss).backward()
  330. # Optimize
  331. if ni % accumulate == 0:
  332. scaler.step(optimizer) # optimizer.step
  333. scaler.update()
  334. optimizer.zero_grad()
  335. if ema:
  336. ema.update(model)
  337. # Print
  338. if rank in [-1, 0]:
  339. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  340. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  341. s = ('%10s' * 2 + '%10.4g' * 6) % (
  342. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  343. pbar.set_description(s)
  344. # Plot
  345. if plots and ni < 10:
  346. f = save_dir / f'train_batch{ni}.jpg' # filename
  347. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  348. # if tb_writer:
  349. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  350. # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
  351. elif plots and ni == 10 and wandb_logger.wandb:
  352. wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
  353. save_dir.glob('train*.jpg') if x.exists()]})
  354. # end batch ------------------------------------------------------------------------------------------------
  355. # end epoch ----------------------------------------------------------------------------------------------------
  356. # Scheduler
  357. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  358. scheduler.step()
  359. # DDP process 0 or single-GPU
  360. if rank in [-1, 0]:
  361. # mAP
  362. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  363. final_epoch = epoch + 1 == epochs
  364. if not opt.notest or final_epoch: # Calculate mAP
  365. wandb_logger.current_epoch = epoch + 1
  366. results, maps, times = test.test(data_dict,
  367. batch_size=batch_size * 2,
  368. imgsz=imgsz_test,
  369. model=ema.ema,
  370. single_cls=opt.single_cls,
  371. dataloader=testloader,
  372. save_dir=save_dir,
  373. verbose=nc < 50 and final_epoch,
  374. plots=plots and final_epoch,
  375. wandb_logger=wandb_logger,
  376. compute_loss=compute_loss,
  377. is_coco=is_coco)
  378. # Write
  379. with open(results_file, 'a') as f:
  380. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  381. if len(opt.name) and opt.bucket:
  382. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  383. # Log
  384. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  385. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  386. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  387. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  388. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  389. if tb_writer:
  390. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  391. if wandb_logger.wandb:
  392. wandb_logger.log({tag: x}) # W&B
  393. # Update best mAP
  394. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  395. if fi > best_fitness:
  396. best_fitness = fi
  397. wandb_logger.end_epoch(best_result=best_fitness == fi)
  398. # Save model
  399. if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
  400. ckpt = {'epoch': epoch,
  401. 'best_fitness': best_fitness,
  402. 'training_results': results_file.read_text(),
  403. 'model': deepcopy(model.module if is_parallel(model) else model).half(),
  404. 'ema': deepcopy(ema.ema).half(),
  405. 'updates': ema.updates,
  406. 'optimizer': optimizer.state_dict(),
  407. 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
  408. # Save last, best and delete
  409. torch.save(ckpt, last)
  410. if best_fitness == fi:
  411. torch.save(ckpt, best)
  412. if (best_fitness == fi) and (epoch >= 200):
  413. torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
  414. if epoch == 0:
  415. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  416. elif ((epoch+1) % 25) == 0:
  417. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  418. elif epoch >= (epochs-5):
  419. torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
  420. if wandb_logger.wandb:
  421. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  422. wandb_logger.log_model(
  423. last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  424. del ckpt
  425. # end epoch ----------------------------------------------------------------------------------------------------
  426. # end training
  427. if rank in [-1, 0]:
  428. # Plots
  429. if plots:
  430. plot_results(save_dir=save_dir) # save as results.png
  431. if wandb_logger.wandb:
  432. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  433. wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
  434. if (save_dir / f).exists()]})
  435. # Test best.pt
  436. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  437. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  438. for m in (last, best) if best.exists() else (last): # speed, mAP tests
  439. results, _, _ = test.test(opt.data,
  440. batch_size=batch_size * 2,
  441. imgsz=imgsz_test,
  442. conf_thres=0.001,
  443. iou_thres=0.7,
  444. model=attempt_load(m, device).half(),
  445. single_cls=opt.single_cls,
  446. dataloader=testloader,
  447. save_dir=save_dir,
  448. save_json=True,
  449. plots=False,
  450. is_coco=is_coco)
  451. # Strip optimizers
  452. final = best if best.exists() else last # final model
  453. for f in last, best:
  454. if f.exists():
  455. strip_optimizer(f) # strip optimizers
  456. if opt.bucket:
  457. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  458. if wandb_logger.wandb and not opt.evolve: # Log the stripped model
  459. wandb_logger.wandb.log_artifact(str(final), type='model',
  460. name='run_' + wandb_logger.wandb_run.id + '_model',
  461. aliases=['last', 'best', 'stripped'])
  462. wandb_logger.finish_run()
  463. else:
  464. dist.destroy_process_group()
  465. torch.cuda.empty_cache()
  466. return results
  467. if __name__ == '__main__':
  468. parser = argparse.ArgumentParser()
  469. parser.add_argument('--weights', type=str, default='yolov7.pt', help='initial weights path')
  470. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  471. parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')
  472. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
  473. parser.add_argument('--epochs', type=int, default=30)
  474. parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
  475. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  476. parser.add_argument('--rect', action='store_true', help='rectangular training')
  477. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  478. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  479. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  480. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  481. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  482. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  483. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  484. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  485. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  486. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  487. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  488. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  489. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  490. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  491. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  492. parser.add_argument('--project', default='runs/train', help='save to project/name')
  493. parser.add_argument('--entity', default=None, help='W&B entity')
  494. parser.add_argument('--name', default='exp', help='save to project/name')
  495. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  496. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  497. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  498. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  499. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  500. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  501. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  502. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  503. opt = parser.parse_args()
  504. # Set DDP variables
  505. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  506. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  507. set_logging(opt.global_rank)
  508. #if opt.global_rank in [-1, 0]:
  509. # check_git_status()
  510. # check_requirements()
  511. # Resume
  512. wandb_run = check_wandb_resume(opt)
  513. if opt.resume and not wandb_run: # resume an interrupted run
  514. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  515. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  516. apriori = opt.global_rank, opt.local_rank
  517. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  518. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
  519. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  520. logger.info('Resuming training from %s' % ckpt)
  521. else:
  522. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  523. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  524. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  525. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  526. opt.name = 'evolve' if opt.evolve else opt.name
  527. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  528. # DDP mode
  529. opt.total_batch_size = opt.batch_size
  530. device = select_device(opt.device, batch_size=opt.batch_size)
  531. if opt.local_rank != -1:
  532. assert torch.cuda.device_count() > opt.local_rank
  533. torch.cuda.set_device(opt.local_rank)
  534. device = torch.device('cuda', opt.local_rank)
  535. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  536. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  537. opt.batch_size = opt.total_batch_size // opt.world_size
  538. # Hyperparameters
  539. with open(opt.hyp) as f:
  540. hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
  541. # Train
  542. logger.info(opt)
  543. if not opt.evolve:
  544. tb_writer = None # init loggers
  545. if opt.global_rank in [-1, 0]:
  546. prefix = colorstr('tensorboard: ')
  547. logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  548. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  549. train(hyp, opt, device, tb_writer)
  550. # Evolve hyperparameters (optional)
  551. else:
  552. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  553. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  554. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  555. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  556. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  557. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  558. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  559. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  560. 'box': (1, 0.02, 0.2), # box loss gain
  561. 'cls': (1, 0.2, 4.0), # cls loss gain
  562. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  563. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  564. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  565. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  566. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  567. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  568. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  569. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  570. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  571. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  572. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  573. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  574. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  575. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  576. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  577. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  578. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  579. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  580. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  581. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  582. opt.notest, opt.nosave = True, True # only test/save final epoch
  583. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  584. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  585. if opt.bucket:
  586. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  587. for _ in range(300): # generations to evolve
  588. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  589. # Select parent(s)
  590. parent = 'single' # parent selection method: 'single' or 'weighted'
  591. x = np.loadtxt('evolve.txt', ndmin=2)
  592. n = min(5, len(x)) # number of previous results to consider
  593. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  594. w = fitness(x) - fitness(x).min() # weights
  595. if parent == 'single' or len(x) == 1:
  596. # x = x[random.randint(0, n - 1)] # random selection
  597. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  598. elif parent == 'weighted':
  599. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  600. # Mutate
  601. mp, s = 0.8, 0.2 # mutation probability, sigma
  602. npr = np.random
  603. npr.seed(int(time.time()))
  604. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  605. ng = len(meta)
  606. v = np.ones(ng)
  607. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  608. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  609. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  610. hyp[k] = float(x[i + 7] * v[i]) # mutate
  611. # Constrain to limits
  612. for k, v in meta.items():
  613. hyp[k] = max(hyp[k], v[1]) # lower limit
  614. hyp[k] = min(hyp[k], v[2]) # upper limit
  615. hyp[k] = round(hyp[k], 5) # significant digits
  616. # Train mutation
  617. results = train(hyp.copy(), opt, device)
  618. # Write mutation results
  619. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  620. # Plot results
  621. plot_evolution(yaml_file)
  622. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  623. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')

随着人工智能和大数据的发展,任一方面对自动化工具有着一定的需求,在当下疫情防控期间,使用mindspore来实现yolo模型来进行目标检测及语义分割,对视频或图片都可以进行口罩佩戴检测和行人社交距离检测,来对公共场所的疫情防控来实行自动化管理。