You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

requirements.txt 5.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. a�c�c�e�l�e�r�a�t�e�=�=�0�.�3�4�.�0� �
  2. �a�c�t�i�v�a�t�i�o�n�s�=�=�0�.�1�.�0� �
  3. �a�n�y�i�o�=�=�4�.�4�.�0� �
  4. �a�r�g�o�n�2�-�c�f�f�i�=�=�2�3�.�1�.�0� �
  5. �a�r�g�o�n�2�-�c�f�f�i�-�b�i�n�d�i�n�g�s�=�=�2�1�.�2�.�0� �
  6. �a�r�r�o�w�=�=�1�.�3�.�0� �
  7. �a�s�t�t�o�k�e�n�s�=�=�2�.�4�.�1� �
  8. �a�s�y�n�c�-�l�r�u�=�=�2�.�0�.�4� �
  9. �a�t�t�r�s�=�=�2�4�.�2�.�0� �
  10. �b�a�b�e�l�=�=�2�.�1�6�.�0� �
  11. �b�e�a�u�t�i�f�u�l�s�o�u�p�4�=�=�4�.�1�2�.�3� �
  12. �b�l�e�a�c�h�=�=�6�.�1�.�0� �
  13. �b�r�o�k�e�n�a�x�e�s�=�=�0�.�6�.�1� �
  14. �c�e�r�t�i�f�i�=�=�2�0�2�4�.�8�.�3�0� �
  15. �c�f�f�i�=�=�1�.�1�7�.�1� �
  16. �c�h�a�r�s�e�t�-�n�o�r�m�a�l�i�z�e�r�=�=�3�.�3�.�2� �
  17. �c�l�i�c�k�=�=�8�.�1�.�7� �
  18. �c�o�l�o�r�a�m�a�=�=�0�.�4�.�6� �
  19. �c�o�m�m�=�=�0�.�2�.�2� �
  20. �c�o�n�t�o�u�r�p�y�=�=�1�.�3�.�0� �
  21. �c�v�s�s�=�=�3�.�1� �
  22. �c�y�c�l�e�r�=�=�0�.�1�2�.�1� �
  23. �d�e�b�u�g�p�y�=�=�1�.�8�.�5� �
  24. �d�e�c�o�r�a�t�o�r�=�=�5�.�1�.�1� �
  25. �d�e�f�u�s�e�d�x�m�l�=�=�0�.�7�.�1� �
  26. �d�i�l�l�=�=�0�.�3�.�8� �
  27. �e�a�s�y�d�i�c�t�=�=�1�.�1�3� �
  28. �e�x�c�e�p�t�i�o�n�g�r�o�u�p�=�=�1�.�2�.�2� �
  29. �e�x�e�c�u�t�i�n�g�=�=�2�.�1�.�0� �
  30. �f�a�s�t�j�s�o�n�s�c�h�e�m�a�=�=�2�.�2�0�.�0� �
  31. �f�i�l�e�.�u�t�i�l�s�=�=�0�.�0�.�1� �
  32. �f�i�l�e�l�o�c�k�=�=�3�.�1�5�.�4� �
  33. �f�o�n�t�t�o�o�l�s�=�=�4�.�5�3�.�1� �
  34. �f�q�d�n�=�=�1�.�5�.�1� �
  35. �f�s�s�p�e�c�=�=�2�0�2�4�.�6�.�1� �
  36. �h�1�1�=�=�0�.�1�4�.�0� �
  37. �h�t�t�p�c�o�r�e�=�=�1�.�0�.�5� �
  38. �h�t�t�p�x�=�=�0�.�2�7�.�2� �
  39. �h�u�g�g�i�n�g�f�a�c�e�-�h�u�b�=�=�0�.�2�4�.�6� �
  40. �i�d�n�a�=�=�3�.�8� �
  41. �i�m�p�o�r�t�l�i�b�_�m�e�t�a�d�a�t�a�=�=�8�.�4�.�0� �
  42. �i�m�p�o�r�t�l�i�b�_�r�e�s�o�u�r�c�e�s�=�=�6�.�4�.�4� �
  43. �i�p�y�k�e�r�n�e�l�=�=�6�.�2�9�.�5� �
  44. �i�p�y�t�h�o�n�=�=�8�.�1�8�.�1� �
  45. �i�p�y�w�i�d�g�e�t�s�=�=�8�.�1�.�5� �
  46. �i�s�o�d�u�r�a�t�i�o�n�=�=�2�0�.�1�1�.�0� �
  47. �j�e�d�i�=�=�0�.�1�9�.�1� �
  48. �J�i�n�j�a�2�=�=�3�.�1�.�4� �
  49. �j�o�b�l�i�b�=�=�1�.�4�.�2� �
  50. �j�s�o�n�5�=�=�0�.�9�.�2�5� �
  51. �j�s�o�n�p�o�i�n�t�e�r�=�=�3�.�0�.�0� �
  52. �j�s�o�n�s�c�h�e�m�a�=�=�4�.�2�3�.�0� �
  53. �j�s�o�n�s�c�h�e�m�a�-�s�p�e�c�i�f�i�c�a�t�i�o�n�s�=�=�2�0�2�3�.�1�2�.�1� �
  54. �j�u�p�y�t�e�r�=�=�1�.�1�.�1� �
  55. �j�u�p�y�t�e�r�-�c�o�n�s�o�l�e�=�=�6�.�6�.�3� �
  56. �j�u�p�y�t�e�r�-�e�v�e�n�t�s�=�=�0�.�1�0�.�0� �
  57. �j�u�p�y�t�e�r�-�l�s�p�=�=�2�.�2�.�5� �
  58. �j�u�p�y�t�e�r�_�c�l�i�e�n�t�=�=�8�.�6�.�2� �
  59. �j�u�p�y�t�e�r�_�c�o�r�e�=�=�5�.�7�.�2� �
  60. �j�u�p�y�t�e�r�_�s�e�r�v�e�r�=�=�2�.�1�4�.�2� �
  61. �j�u�p�y�t�e�r�_�s�e�r�v�e�r�_�t�e�r�m�i�n�a�l�s�=�=�0�.�5�.�3� �
  62. �j�u�p�y�t�e�r�l�a�b�=�=�4�.�2�.�5� �
  63. �j�u�p�y�t�e�r�l�a�b�_�p�y�g�m�e�n�t�s�=�=�0�.�3�.�0� �
  64. �j�u�p�y�t�e�r�l�a�b�_�s�e�r�v�e�r�=�=�2�.�2�7�.�3� �
  65. �j�u�p�y�t�e�r�l�a�b�_�w�i�d�g�e�t�s�=�=�3�.�0�.�1�3� �
  66. �k�i�w�i�s�o�l�v�e�r�=�=�1�.�4�.�7� �
  67. �M�a�r�k�u�p�S�a�f�e�=�=�2�.�1�.�5� �
  68. �m�a�t�p�l�o�t�l�i�b�=�=�3�.�9�.�2� �
  69. �m�a�t�p�l�o�t�l�i�b�-�i�n�l�i�n�e�=�=�0�.�1�.�7� �
  70. �m�i�s�t�u�n�e�=�=�3�.�0�.�2� �
  71. �m�p�m�a�t�h�=�=�1�.�3�.�0� �
  72. �n�b�c�l�i�e�n�t�=�=�0�.�1�0�.�0� �
  73. �n�b�c�o�n�v�e�r�t�=�=�7�.�1�6�.�4� �
  74. �n�b�f�o�r�m�a�t�=�=�5�.�1�0�.�4� �
  75. �n�e�s�t�-�a�s�y�n�c�i�o�=�=�1�.�6�.�0� �
  76. �n�e�t�w�o�r�k�x�=�=�3�.�2�.�1� �
  77. �n�l�p�=�=�0�.�4�.�0� �
  78. �n�l�t�k�=�=�3�.�9�.�1� �
  79. �n�o�t�e�b�o�o�k�=�=�7�.�2�.�2� �
  80. �n�o�t�e�b�o�o�k�_�s�h�i�m�=�=�0�.�2�.�4� �
  81. �n�u�m�p�y�=�=�1�.�2�3�.�0� �
  82. �o�v�e�r�r�i�d�e�s�=�=�7�.�7�.�0� �
  83. �p�a�c�k�a�g�i�n�g�=�=�2�4�.�1� �
  84. �p�a�n�d�a�s�=�=�2�.�2�.�2� �
  85. �p�a�n�d�o�c�f�i�l�t�e�r�s�=�=�1�.�5�.�1� �
  86. �p�a�r�s�o�=�=�0�.�8�.�4� �
  87. �p�i�l�l�o�w�=�=�1�0�.�4�.�0� �
  88. �p�l�a�t�f�o�r�m�d�i�r�s�=�=�4�.�2�.�2� �
  89. �p�r�o�m�e�t�h�e�u�s�_�c�l�i�e�n�t�=�=�0�.�2�0�.�0� �
  90. �p�r�o�m�p�t�_�t�o�o�l�k�i�t�=�=�3�.�0�.�4�7� �
  91. �p�s�u�t�i�l�=�=�6�.�0�.�0� �
  92. �p�u�r�e�_�e�v�a�l�=�=�0�.�2�.�3� �
  93. �p�y�a�r�r�o�w�=�=�1�7�.�0�.�0� �
  94. �p�y�c�p�a�r�s�e�r�=�=�2�.�2�2� �
  95. �P�y�g�m�e�n�t�s�=�=�2�.�1�8�.�0� �
  96. �p�y�p�a�r�s�i�n�g�=�=�3�.�1�.�4� �
  97. �p�y�t�h�o�n�-�d�a�t�e�u�t�i�l�=�=�2�.�9�.�0�.�p�o�s�t�0� �
  98. �p�y�t�h�o�n�-�j�s�o�n�-�l�o�g�g�e�r�=�=�2�.�0�.�7� �
  99. �p�y�t�z�=�=�2�0�2�4�.�1� �
  100. �p�y�w�i�n�3�2�=�=�3�0�6� �
  101. �p�y�w�i�n�p�t�y�=�=�2�.�0�.�1�3� �
  102. �P�y�Y�A�M�L�=�=�6�.�0�.�2� �
  103. �p�y�z�m�q�=�=�2�6�.�2�.�0� �
  104. �r�e�f�e�r�e�n�c�i�n�g�=�=�0�.�3�5�.�1� �
  105. �r�e�g�e�x�=�=�2�0�2�4�.�7�.�2�4� �
  106. �r�e�q�u�e�s�t�s�=�=�2�.�3�2�.�3� �
  107. �r�f�c�3�3�3�9�-�v�a�l�i�d�a�t�o�r�=�=�0�.�1�.�4� �
  108. �r�f�c�3�9�8�6�-�v�a�l�i�d�a�t�o�r�=�=�0�.�1�.�1� �
  109. �r�p�d�s�-�p�y�=�=�0�.�2�0�.�0� �
  110. �s�a�f�e�t�e�n�s�o�r�s�=�=�0�.�4�.�4� �
  111. �s�c�i�k�i�t�-�l�e�a�r�n�=�=�1�.�5�.�1� �
  112. �s�c�i�p�y�=�=�1�.�1�3�.�1� �
  113. �s�e�a�b�o�r�n�=�=�0�.�1�3�.�2� �
  114. �S�e�n�d�2�T�r�a�s�h�=�=�1�.�8�.�3� �
  115. �s�h�=�=�2�.�0�.�7� �
  116. �s�i�x�=�=�1�.�1�6�.�0� �
  117. �s�n�i�f�f�i�o�=�=�1�.�3�.�1� �
  118. �s�o�u�p�s�i�e�v�e�=�=�2�.�6� �
  119. �s�t�a�c�k�-�d�a�t�a�=�=�0�.�6�.�3� �
  120. �s�y�m�p�y�=�=�1�.�1�3�.�2� �
  121. �t�e�r�m�i�n�a�d�o�=�=�0�.�1�8�.�1� �
  122. �t�h�r�e�a�d�p�o�o�l�c�t�l�=�=�3�.�5�.�0� �
  123. �t�i�n�y�c�s�s�2�=�=�1�.�3�.�0� �
  124. �t�o�k�e�n�i�z�e�r�s�=�=�0�.�1�9�.�1� �
  125. �t�o�m�l�i�=�=�2�.�0�.�1� �
  126. �t�o�r�c�h�=�=�2�.�4�.�1�+�c�u�1�2�4� �
  127. �t�o�r�c�h�a�u�d�i�o�=�=�2�.�4�.�1�+�c�u�1�2�4� �
  128. �t�o�r�c�h�v�i�s�i�o�n�=�=�0�.�1�9�.�1�+�c�u�1�2�4� �
  129. �t�o�r�n�a�d�o�=�=�6�.�4�.�1� �
  130. �t�q�d�m�=�=�4�.�6�6�.�5� �
  131. �t�r�a�i�t�l�e�t�s�=�=�5�.�1�4�.�3� �
  132. �t�r�a�n�s�f�o�r�m�e�r�s�=�=�4�.�4�4�.�2� �
  133. �t�y�p�e�s�-�p�y�t�h�o�n�-�d�a�t�e�u�t�i�l�=�=�2�.�9�.�0�.�2�0�2�4�0�8�2�1� �
  134. �t�y�p�i�n�g�_�e�x�t�e�n�s�i�o�n�s�=�=�4�.�1�2�.�2� �
  135. �t�z�d�a�t�a�=�=�2�0�2�4�.�1� �
  136. �u�r�i�-�t�e�m�p�l�a�t�e�=�=�1�.�3�.�0� �
  137. �u�r�l�l�i�b�3�=�=�2�.�2�.�2� �
  138. �u�t�i�l�s�=�=�1�.�0�.�2� �
  139. �w�c�w�i�d�t�h�=�=�0�.�2�.�1�3� �
  140. �w�e�b�c�o�l�o�r�s�=�=�2�4�.�8�.�0� �
  141. �w�e�b�e�n�c�o�d�i�n�g�s�=�=�0�.�5�.�1� �
  142. �w�e�b�s�o�c�k�e�t�-�c�l�i�e�n�t�=�=�1�.�8�.�0� �
  143. �w�i�d�g�e�t�s�n�b�e�x�t�e�n�s�i�o�n�=�=�4�.�0�.�1�3� �
  144. �x�g�b�o�o�s�t�=�=�2�.�1�.�1� �
  145. �x�x�h�a�s�h�=�=�3�.�5�.�0� �
  146. �z�i�p�p�=�=�3�.�2�0�.�1� �

在信息安全领域,漏洞评估和管理是关键任务之一。本作品探讨了如何利用预训练文本大模型来评估和研判漏洞的严重等级,具体基于通用漏洞评分系统。传统漏洞评分方法依赖于手动分析和专家评审。而基于自然语言处理文本大模型通过其深度学习能力,可以自动化地处理和分析大量的安全相关文本数据,从而提高漏洞评估的效率和准确性。结合词干提取、词性还原能够更好地发挥自然语言处理文本大模型的预测能力与准确度。