|
- import tensorflow as tf
-
-
- def dfm_criteo(dense_input, sparse_input, y_, partitioner=None, part_all=True, param_on_gpu=True):
- feature_dimension = 33762577
- embedding_size = 128
- learning_rate = 0.01 / 8 # here to comply with HETU
- all_partitioner, embed_partitioner = (
- partitioner, None) if part_all else (None, partitioner)
- with tf.compat.v1.variable_scope('dfm', dtype=tf.float32, initializer=tf.random_normal_initializer(stddev=0.01), partitioner=all_partitioner):
- with tf.device('/cpu:0'):
- Embedding1 = tf.compat.v1.get_variable(name="Embedding1", shape=(
- feature_dimension, 1), partitioner=embed_partitioner)
- Embedding2 = tf.compat.v1.get_variable(name="embeddings", shape=(
- feature_dimension, embedding_size), partitioner=embed_partitioner)
- sparse_1dim_input = tf.nn.embedding_lookup(
- Embedding1, sparse_input)
- sparse_2dim_input = tf.nn.embedding_lookup(
- Embedding2, sparse_input)
-
- device = '/gpu:0' if param_on_gpu else '/cpu:0'
- with tf.device(device):
- FM_W = tf.compat.v1.get_variable(name='FM_W', shape=[13, 1])
- W1 = tf.compat.v1.get_variable(
- name='W1', shape=[26*embedding_size, 256])
- W2 = tf.compat.v1.get_variable(name='W2', shape=[256, 256])
- W3 = tf.compat.v1.get_variable(name='W3', shape=[256, 1])
-
- with tf.device('/gpu:0'):
- fm_dense_part = tf.matmul(dense_input, FM_W)
- fm_sparse_part = tf.reduce_sum(sparse_1dim_input, 1)
- # fst order output
- y1 = fm_dense_part + fm_sparse_part
-
- sparse_2dim_sum = tf.reduce_sum(sparse_2dim_input, 1)
- sparse_2dim_sum_square = tf.multiply(
- sparse_2dim_sum, sparse_2dim_sum)
-
- sparse_2dim_square = tf.multiply(
- sparse_2dim_input, sparse_2dim_input)
- sparse_2dim_square_sum = tf.reduce_sum(sparse_2dim_square, 1)
- sparse_2dim = sparse_2dim_sum_square + -1 * sparse_2dim_square_sum
- sparse_2dim_half = sparse_2dim * 0.5
- # snd order output
- y2 = tf.reduce_sum(sparse_2dim_half, 1, keepdims=True)
-
- # DNN
- flatten = tf.reshape(sparse_2dim_input, (-1, 26*embedding_size))
- fc1 = tf.matmul(flatten, W1)
- relu1 = tf.nn.relu(fc1)
- fc2 = tf.matmul(relu1, W2)
- relu2 = tf.nn.relu(fc2)
- y3 = tf.matmul(relu2, W3)
-
- y4 = y1 + y2
- y = y4 + y3
- loss = tf.reduce_mean(
- tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=y_))
-
- optimizer = tf.compat.v1.train.GradientDescentOptimizer(
- learning_rate)
- return loss, y, optimizer
|