import hetu as ht import time import argparse import os import numpy as np def fc(x, shape, name, with_relu=True, rank=-1): weight_save = np.random.normal(0, 0.04, size=shape) bias_save = np.random.normal(0, 0.04, size=shape[-1:]) weight = ht.Variable(value=weight_save, name=name+'_weight') bias = ht.Variable(value=bias_save, name=name+'_bias') global args if args.save and args.rank == rank: np.save('std/' + name + '_weight.npy', weight_save) np.save('std/' + name + '_bias.npy', bias_save) x = ht.matmul_op(x, weight) x = x + ht.broadcastto_op(bias, x) if with_relu: x = ht.relu_op(x) return x if __name__ == "__main__": # argument parser parser = argparse.ArgumentParser() parser.add_argument('--steps', type=int, default=8, help='training steps') parser.add_argument('--warmup', type=int, default=2, help='warm up steps excluded from timing') parser.add_argument('--batch-size', type=int, default=8, help='batch size') parser.add_argument('--learning-rate', type=float, default=0.00001, help='learning rate') parser.add_argument('--save', action='store_true') global args args = parser.parse_args() if args.save: comm = ht.wrapped_mpi_nccl_init() args.rank = comm.rank if args.rank == 0 and not os.path.exists('std'): os.mkdir('std') # dataset datasets = ht.data.mnist() train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] batch_size = 10000 batch_num = 5 value_x_list = [] value_y_list = [] for i in range(batch_num): start = i * batch_size ending = (i+1) * batch_size value_x_list.append(train_set_x[start:ending]) value_y_list.append(train_set_y[start:ending]) # model parallel with ht.context(ht.gpu(0)): x = ht.Variable(name="dataloader_x", trainable=False) activation = fc(x, (784, 1024), 'mlp_fc1', with_relu=True, rank=0) with ht.context(ht.gpu(1)): weight_save = np.random.normal(0, 0.04, size=(1024, 2048)) if args.save and args.rank == 1: np.save('std/' + 'special_weight.npy', weight_save) weight = ht.Variable(value=weight_save, name='mlp_fc1_weight') activation = ht.matmul_op(activation, weight) with ht.context(ht.gpu(2)): activation = ht.relu_op(activation) y_pred = fc(activation, (2048, 10), 'mlp_fc2', with_relu=False, rank=2) y_ = ht.Variable(name="dataloader_y", trainable=False) loss = ht.softmaxcrossentropy_op(y_pred, y_) loss = ht.reduce_mean_op(loss, [0]) opt = ht.optim.SGDOptimizer(learning_rate=args.learning_rate) train_op = opt.minimize(loss) executor = ht.Executor([loss, train_op]) # training for step in range(args.steps): if step == args.warmup: start = time.time() loss_val, _ = executor.run(feed_dict={ x: value_x_list[step % batch_num], y_: value_y_list[step % batch_num]}, convert_to_numpy_ret_vals=True) if executor.rank == 2: print('step:', step, 'loss:', loss_val) end = time.time() if executor.rank == 2: print("time elapsed for {} steps: {}s".format( args.steps-args.warmup, round(end-start, 3)))