import tensorflow as tf def wdl_criteo(dense_input, sparse_input, y_, partitioner=None, part_all=True, param_on_gpu=True): feature_dimension = 33762577 embedding_size = 128 learning_rate = 0.01 / 8 # here to comply with HETU all_partitioner, embed_partitioner = ( partitioner, None) if part_all else (None, partitioner) with tf.compat.v1.variable_scope('wdl', dtype=tf.float32, initializer=tf.random_normal_initializer(stddev=0.01), partitioner=all_partitioner): with tf.device('/cpu:0'): Embedding = tf.compat.v1.get_variable(name="Embedding", shape=( feature_dimension, embedding_size), partitioner=embed_partitioner) sparse_input_embedding = tf.nn.embedding_lookup( Embedding, sparse_input) device = '/gpu:0' if param_on_gpu else '/cpu:0' with tf.device(device): W1 = tf.compat.v1.get_variable(name='W1', shape=[13, 256]) W2 = tf.compat.v1.get_variable(name='W2', shape=[256, 256]) W3 = tf.compat.v1.get_variable(name='W3', shape=[256, 256]) W4 = tf.compat.v1.get_variable( name='W4', shape=[256 + 26 * embedding_size, 1]) with tf.device('/gpu:0'): sparse_input_embedding = tf.reshape( sparse_input_embedding, (-1, 26*embedding_size)) flatten = dense_input fc1 = tf.matmul(flatten, W1) relu1 = tf.nn.relu(fc1) fc2 = tf.matmul(relu1, W2) relu2 = tf.nn.relu(fc2) y3 = tf.matmul(relu2, W3) y4 = tf.concat((sparse_input_embedding, y3), 1) y = tf.matmul(y4, W4) loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=y_)) optimizer = tf.compat.v1.train.GradientDescentOptimizer( learning_rate) return loss, y, optimizer