import numpy as np import tensorflow as tf def tf_logreg(x, y_): ''' Logistic Regression model in TensorFlow, for MNIST dataset. Parameters: x: Variable(tensorflow.python.framework.ops.Tensor), shape (N, dims) y_: Variable(tensorflow.python.framework.ops.Tensor), shape (N, num_classes) Return: loss: Variable(tensorflow.python.framework.ops.Tensor), shape (1,) y: Variable(tensorflow.python.framework.ops.Tensor), shape (N, num_classes) ''' print("Build logistic regression model in tensorflow...") weight = tf.Variable(np.zeros(shape=(784, 10)).astype(np.float32)) bias = tf.Variable(np.zeros(shape=(10, )).astype(np.float32)) y = tf.matmul(x, weight) + bias loss = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) loss = tf.reduce_mean(loss) return loss, y