|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import torch
- import torch.nn as nn
-
-
- cfg = {
- 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
- 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
- }
-
-
- class VGG(nn.Module):
- def __init__(self, vgg_name, num_class=10):
- super(VGG, self).__init__()
- self.features = self._make_layers(cfg[vgg_name])
- self.fc1 = nn.Linear(512, 4096)
- self.fc2 = nn.Linear(4096, 4096)
- self.classifier = nn.Linear(4096, num_class)
-
- def forward(self, x):
- out = self.features(x)
- out = out.view(out.size(0), -1)
- out = self.fc2(self.fc1(out))
- out = self.classifier(out)
- return out
-
- def _make_layers(self, cfg):
- layers = []
- in_channels = 3
- for x in cfg:
- if x == 'M':
- layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
- else:
- layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
- nn.BatchNorm2d(x),
- nn.ReLU(inplace=True)]
- in_channels = x
- layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
- return nn.Sequential(*layers)
-
-
- def vgg16(num_class=10):
- return VGG('VGG16', num_class)
-
-
- def vgg19(num_class=10):
- return VGG('VGG19', num_class)
|