You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet.py 4.0 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. class BasicBlock(nn.Module):
  5. expansion = 1
  6. def __init__(self, in_planes, planes, stride=1):
  7. super(BasicBlock, self).__init__()
  8. self.conv1 = nn.Conv2d(
  9. in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  10. self.bn1 = nn.BatchNorm2d(planes)
  11. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
  12. stride=1, padding=1, bias=False)
  13. self.bn2 = nn.BatchNorm2d(planes)
  14. self.shortcut = nn.Sequential()
  15. if stride != 1 or in_planes != self.expansion*planes:
  16. self.shortcut = nn.Sequential(
  17. nn.Conv2d(in_planes, self.expansion*planes,
  18. kernel_size=1, stride=stride, bias=False),
  19. nn.BatchNorm2d(self.expansion*planes)
  20. )
  21. def forward(self, x):
  22. out = F.relu(self.bn1(self.conv1(x)))
  23. out = self.bn2(self.conv2(out))
  24. out += self.shortcut(x)
  25. out = F.relu(out)
  26. return out
  27. class Bottleneck(nn.Module):
  28. expansion = 4
  29. def __init__(self, in_planes, planes, stride=1):
  30. super(Bottleneck, self).__init__()
  31. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
  32. self.bn1 = nn.BatchNorm2d(planes)
  33. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
  34. stride=stride, padding=1, bias=False)
  35. self.bn2 = nn.BatchNorm2d(planes)
  36. self.conv3 = nn.Conv2d(planes, self.expansion *
  37. planes, kernel_size=1, bias=False)
  38. self.bn3 = nn.BatchNorm2d(self.expansion*planes)
  39. self.shortcut = nn.Sequential()
  40. if stride != 1 or in_planes != self.expansion*planes:
  41. self.shortcut = nn.Sequential(
  42. nn.Conv2d(in_planes, self.expansion*planes,
  43. kernel_size=1, stride=stride, bias=False),
  44. nn.BatchNorm2d(self.expansion*planes)
  45. )
  46. def forward(self, x):
  47. out = F.relu(self.bn1(self.conv1(x)))
  48. out = F.relu(self.bn2(self.conv2(out)))
  49. out = self.bn3(self.conv3(out))
  50. out += self.shortcut(x)
  51. out = F.relu(out)
  52. return out
  53. class ResNet(nn.Module):
  54. def __init__(self, block, num_blocks, num_classes=10):
  55. super(ResNet, self).__init__()
  56. self.in_planes = 64
  57. self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
  58. stride=1, padding=1, bias=False)
  59. self.bn1 = nn.BatchNorm2d(64)
  60. self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
  61. self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
  62. self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
  63. self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
  64. self.linear = nn.Linear(512*block.expansion, num_classes)
  65. def _make_layer(self, block, planes, num_blocks, stride):
  66. strides = [stride] + [1]*(num_blocks-1)
  67. layers = []
  68. for stride in strides:
  69. layers.append(block(self.in_planes, planes, stride))
  70. self.in_planes = planes * block.expansion
  71. return nn.Sequential(*layers)
  72. def forward(self, x):
  73. out = F.relu(self.bn1(self.conv1(x)))
  74. out = self.layer1(out)
  75. out = self.layer2(out)
  76. out = self.layer3(out)
  77. out = self.layer4(out)
  78. out = F.avg_pool2d(out, 4)
  79. out = out.view(out.size(0), -1)
  80. out = self.linear(out)
  81. return out
  82. def resnet18(num_classes=10):
  83. return ResNet(BasicBlock, [2, 2, 2, 2], num_classes)
  84. def resnet34(num_classes=10):
  85. return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
  86. def resnet50(num_classes=10):
  87. return ResNet(Bottleneck, [3, 4, 6, 3], num_classes)
  88. def resnet101(num_classes=10):
  89. return ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
  90. def resnet152(num_classes=10):
  91. return ResNet(Bottleneck, [3, 8, 36, 3], num_classes)