|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- <div align=center>
- <img src="https://forgeplus.trustie.net/repo/PKU-DAIR/Hetu/raw/branch/master/img/hetu.png?raw=true" width="300" />
- </div>
-
- # HETU
-
- <!--- [](LICENSE) --->
-
- [Documentation](https://hetu-doc.readthedocs.io) | [Examples](https://hetu-doc.readthedocs.io/en/latest/Overview/performance.html)
-
- Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, developed by <a href="http://net.pku.edu.cn/~cuibin/" target="_blank" rel="nofollow">DAIR Lab</a> at Peking University. It takes account of both high availability in industry and innovation in academia, which has a number of advanced characteristics:
-
- - Applicability. DL model definition with standard dataflow graph; many basic CPU and GPU operators; efficient implementation of more than plenty of DL models and at least popular 10 ML algorithms.
-
- - Efficiency. Achieve at least 30% speedup compared to TensorFlow on DNN, CNN, RNN benchmarks.
-
- - Flexibility. Supporting various parallel training protocols and distributed communication architectures, such as Data/Model/Pipeline parallel; Parameter server & AllReduce.
-
- - Scalability. Deployment on more than 100 computation nodes; Training giant models with trillions of model parameters, e.g., Criteo Kaggle, Open Graph Benchmark
-
- - Agility. Automatically ML pipeline: feature engineering, model selection, hyperparameter search.
-
- We welcome everyone interested in machine learning or graph computing to contribute codes, create issues or pull requests. Please refer to [Contribution Guide](https://forgeplus.trustie.net/projects/PKU-DAIR/Hetu/tree/master/CONTRIBUTING.md) for more details.
-
- ## Installation
- 1. Clone the repository.
-
- 2. Prepare the environment. We use Anaconda to manage packages. The following command create the conda environment to be used:
- ```conda env create -f environment.yml``` .
- Please prepare Cuda toolkit and CuDNN in advance.
-
- 3. We use CMake to compile Hetu. Please copy the example configuration for compilation by `cp cmake/config.example.cmake cmake/config.cmake`. Users can modify the configuration file to enable/disable the compilation of each module. For advanced users (who not using the provided conda environment), the prerequisites for different modules in Hetu is listed in appendix.
-
- ```bash
- # modify paths and configurations in cmake/config.cmake
-
- # generate Makefile
- mkdir build && cd build && cmake ..
-
- # compile
- # make all
- make -j 8
- # make hetu, version is specified in cmake/config.cmake
- make hetu -j 8
- # make allreduce module
- make allreduce -j 8
- # make ps module
- make ps -j 8
- # make geometric module
- make geometric -j 8
- # make hetu-cache module
- make hetu_cache -j 8
- ```
-
-
- 4. Prepare environment for running. Edit the hetu.exp file and set the environment path for python and the path for executable mpirun if necessary (for advanced users not using the provided conda environment). Then execute the command `source hetu.exp` .
-
-
-
- ## Usage
-
- Train logistic regression on gpu:
-
- ```bash
- bash examples/cnn/scripts/hetu_1gpu.sh logreg MNIST
- ```
-
- Train a 3-layer mlp on gpu:
-
- ```bash
- bash examples/cnn/scripts/hetu_1gpu.sh mlp CIFAR10
- ```
-
- Train a 3-layer cnn with gpu:
-
- ```bash
- bash examples/cnn/scripts/hetu_1gpu.sh cnn_3_layers MNIST
- ```
-
- Train a 3-layer mlp with allreduce on 8 gpus (use mpirun):
- ```bash
- bash examples/cnn/scripts/hetu_8gpu.sh mlp CIFAR10
- ```
-
- Train a 3-layer mlp with PS on 1 server and 2 workers:
- ```bash
- # in the script we launch the scheduler and server, and two workers
- bash examples/cnn/scripts/hetu_2gpu_ps.sh mlp CIFAR10
- ```
-
-
- ## More Examples
- Please refer to examples directory, which contains CNN, NLP, CTR, GNN training scripts. For distributed training, please refer to CTR and GNN tasks.
-
- ## Community
- * Email: xupeng.miao@pku.edu.cn
- * Slack: coming soon
- * Hetu homepage: https://hetu-doc.readthedocs.io
- * [Committers & Contributors](https://forgeplus.trustie.net/projects/PKU-DAIR/Hetu/tree/master/COMMITTERS.md)
- * [Contributing to Hetu](https://forgeplus.trustie.net/projects/PKU-DAIR/Hetu/tree/master/CONTRIBUTING.md)
- * [Development plan](https://hetu-doc.readthedocs.io/en/latest/plan.html)
-
- ## Enterprise Users
-
- If you are enterprise users and find Hetu is useful in your work, please let us know, and we are glad to add your company logo here.
-
- <img src="https://forgeplus.trustie.net/repo/PKU-DAIR/Hetu/raw/branch/master/img/tencent.png?raw=true" width = "200"/>
- <br><br>
- <img src="https://forgeplus.trustie.net/repo/PKU-DAIR/Hetu/raw/branch/master/img/alibabacloud.png?raw=true" width = "200"/>
- <br><br>
- <img src="https://forgeplus.trustie.net/repo/PKU-DAIR/Hetu/raw/branch/master/img/kuaishou.png?raw=true" width = "200"/>
-
- ## License
-
- The entire codebase is under [license](https://forgeplus.trustie.net/projects/PKU-DAIR/Hetu/tree/master/LICENSE)
-
- ## Papers
- 1. Xupeng Miao, Linxiao Ma, Zhi Yang, Yingxia Shao, Bin Cui, Lele Yu, Jiawei Jiang. [CuWide: Towards Efficient Flow-based Training for Sparse Wide Models on GPUs.](https://ieeexplore.ieee.org/document/9261124). TKDE 2021, ICDE 2021
- 2. Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, Bin Cui. [Heterogeneity-Aware Distributed Machine Learning Training via Partial Reduce](https://doi.org/10.1145/3448016.3452773) SIGMOD 2021
- 3. coming soon
-
- ## Acknowledgements
-
- We learned and borrowed insights from a few open source projects including [TinyFlow](https://github.com/tqchen/tinyflow), [autodist](https://github.com/petuum/autodist), [tf.distribute](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/distribute) and [Angel](https://github.com/Angel-ML/angel).
-
- ## Appendix
- The prerequisites for different modules in Hetu is listed as follows:
- ```
- "*" means you should prepare by yourself, while others support auto-download
-
- Hetu: OpenMP(*), CMake(*)
- Hetu (version mkl): MKL 1.6.1
- Hetu (version gpu): CUDA 10.1(*), CUDNN 7.5(*)
- Hetu (version all): both
-
- Hetu-AllReduce: MPI 3.1, NCCL 2.8(*), this module needs GPU version
-
- Hetu-PS: Protobuf(*), ZeroMQ 4.3.2
-
- Hetu-Geometric: Pybind11(*), Metis(*)
-
- Hetu-Cache: Pybind11(*), this module needs PS module
-
- ##################################################################
- Tips for preparing the prerequisites
-
- Preparing CUDA, CUDNN, NCCL(NCCl is already in conda environment):
- 1. download from https://developer.nvidia.com
- 2. install
- 3. modify paths in cmake/config.cmake if necessary
-
- Preparing OpenMP:
- Your just need to ensure your compiler support openmp.
-
- Preparing CMake, Protobuf, Pybind11, Metis:
- Install by anaconda:
- conda install cmake=3.18 libprotobuf pybind11=2.6.0 metis
-
- Preparing OpenMPI (not necessary):
- install by anaconda: `conda install -c conda-forge openmpi=4.0.3`
- or
- 1. download from https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.3.tar.gz
- 2. build openmpi by `./configure /path/to/build && make -j8 && make install`
- 3. modify MPI_HOME to /path/to/build in cmake/config.cmake
-
- Preparing MKL (not necessary):
- install by anaconda: `conda install -c conda-forge onednn`
- or
- 1. download from https://github.com/intel/mkl-dnn/archive/v1.6.1.tar.gz
- 2. build mkl by `mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8`
- 3. modify MKL_ROOT to /path/to/root and MKL_BUILD to /path/to/build in cmake/config.cmake
-
- Preparing ZeroMQ (not necessary):
- install by anaconda: `conda install -c anaconda zeromq=4.3.2`
- or
- 1. download from https://github.com/zeromq/libzmq/releases/download/v4.3.2/zeromq-4.3.2.zip
- 2. build zeromq by 'mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8`
- 3. modify ZMQ_ROOT to /path/to/build in cmake/config.cmake
- ```
-
|