|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- import hetu as ht
- from hetu import init
-
- import numpy as np
- import time
-
-
- def dfm_criteo(dense_input, sparse_input, y_):
- feature_dimension = 33762577
- embedding_size = 128
- learning_rate = 0.01
-
- # FM
- Embedding1 = init.random_normal(
- [feature_dimension, 1], stddev=0.01, name="fst_order_embedding", ctx=ht.cpu(0))
- FM_W = init.random_normal([13, 1], stddev=0.01, name="dense_parameter")
- sparse_1dim_input = ht.embedding_lookup_op(
- Embedding1, sparse_input, ctx=ht.cpu(0))
- fm_dense_part = ht.matmul_op(dense_input, FM_W)
- fm_sparse_part = ht.reduce_sum_op(sparse_1dim_input, axes=1)
- # fst order output
- y1 = fm_dense_part + fm_sparse_part
-
- Embedding2 = init.random_normal(
- [feature_dimension, embedding_size], stddev=0.01, name="snd_order_embedding", ctx=ht.cpu(0))
- sparse_2dim_input = ht.embedding_lookup_op(
- Embedding2, sparse_input, ctx=ht.cpu(0))
- sparse_2dim_sum = ht.reduce_sum_op(sparse_2dim_input, axes=1)
- sparse_2dim_sum_square = ht.mul_op(sparse_2dim_sum, sparse_2dim_sum)
-
- sparse_2dim_square = ht.mul_op(sparse_2dim_input, sparse_2dim_input)
- sparse_2dim_square_sum = ht.reduce_sum_op(sparse_2dim_square, axes=1)
- sparse_2dim = sparse_2dim_sum_square + -1 * sparse_2dim_square_sum
- sparse_2dim_half = sparse_2dim * 0.5
- # snd order output
- y2 = ht.reduce_sum_op(sparse_2dim_half, axes=1, keepdims=True)
-
- # DNN
- flatten = ht.array_reshape_op(sparse_2dim_input, (-1, 26*embedding_size))
- W1 = init.random_normal([26*embedding_size, 256], stddev=0.01, name="W1")
- W2 = init.random_normal([256, 256], stddev=0.01, name="W2")
- W3 = init.random_normal([256, 1], stddev=0.01, name="W3")
-
- fc1 = ht.matmul_op(flatten, W1)
- relu1 = ht.relu_op(fc1)
- fc2 = ht.matmul_op(relu1, W2)
- relu2 = ht.relu_op(fc2)
- y3 = ht.matmul_op(relu2, W3)
-
- y4 = y1 + y2
- y = y4 + y3
- y = ht.sigmoid_op(y)
-
- loss = ht.binarycrossentropy_op(y, y_)
- loss = ht.reduce_mean_op(loss, [0])
- opt = ht.optim.SGDOptimizer(learning_rate=learning_rate)
- train_op = opt.minimize(loss)
-
- return loss, y, y_, train_op
|