You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

processBertData.py 11 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. from datasets import load_dataset
  2. import random
  3. import hetu
  4. import os
  5. import numpy as np
  6. # https://the-eye.eu/public/AI/pile_preliminary_components/books1.tar.gz
  7. class TrainingInstance(object):
  8. """A single training instance (sentence pair)."""
  9. def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
  10. is_random_next):
  11. self.tokens = tokens
  12. self.segment_ids = segment_ids
  13. self.is_random_next = is_random_next
  14. self.masked_lm_positions = masked_lm_positions
  15. self.masked_lm_labels = masked_lm_labels
  16. def __str__(self):
  17. s = ""
  18. s += "tokens: %s\n" % (" ".join(
  19. [str(x) for x in self.tokens]))
  20. s += "segment_ids: %s\n" % (" ".join([str(x)
  21. for x in self.segment_ids]))
  22. s += "is_random_next: %s\n" % self.is_random_next
  23. s += "masked_lm_positions: %s\n" % (" ".join(
  24. [str(x) for x in self.masked_lm_positions]))
  25. s += "masked_lm_labels: %s\n" % (" ".join(
  26. [str(x) for x in self.masked_lm_labels]))
  27. s += "\n"
  28. return s
  29. def __repr__(self):
  30. return self.__str__()
  31. def create_masked_lm_predictions(tokens, masked_lm_prob,
  32. max_predictions_per_seq, vocab_words, rng):
  33. """Creates the predictions for the masked LM objective."""
  34. cand_indexes = []
  35. for (i, token) in enumerate(tokens):
  36. if token == "[CLS]" or token == "[SEP]":
  37. continue
  38. cand_indexes.append(i)
  39. rng.shuffle(cand_indexes)
  40. output_tokens = list(tokens)
  41. num_to_predict = min(max_predictions_per_seq,
  42. max(1, int(round(len(tokens) * masked_lm_prob))))
  43. masked_lms = []
  44. for index in cand_indexes:
  45. if len(masked_lms) >= num_to_predict:
  46. break
  47. masked_token = None
  48. # replace with [MASK] at 80%.
  49. if rng.random() < 0.8:
  50. masked_token = "[MASK]"
  51. else:
  52. # keep original at 10%.
  53. if rng.random() < 0.5:
  54. masked_token = tokens[index]
  55. # replace with random word at 10%.
  56. else:
  57. masked_token = vocab_words[rng.randint(
  58. 0, len(vocab_words) - 1)]
  59. output_tokens[index] = masked_token
  60. masked_lms.append([index, tokens[index]])
  61. masked_lms.sort(key=lambda x: x[0])
  62. masked_lm_positions = []
  63. masked_lm_labels = []
  64. for p in masked_lms:
  65. masked_lm_positions.append(p[0])
  66. masked_lm_labels.append(p[1])
  67. return (output_tokens, masked_lm_positions, masked_lm_labels)
  68. def create_data_from_document(all_document, doc_id, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
  69. """ Create Training example for input document """
  70. document = all_document[doc_id]
  71. max_num_tokens = max_seq_length - 3 # [CLS], [SEP], [SEP]
  72. target_seq_length = max_num_tokens
  73. # generate short sequence at the probility of short_seq_prob
  74. # In order to minimize the mismatch between pre-training and fine-tuning.
  75. if rng.random() < short_seq_prob:
  76. target_seq_length = rng.randint(2, max_num_tokens)
  77. instances = []
  78. current_chunk = []
  79. current_length = 0
  80. i = 0
  81. while i < len(document):
  82. segment = document[i]
  83. current_chunk.append(segment)
  84. current_length += len(segment)
  85. if i == len(document) - 1 or current_length >= target_seq_length:
  86. if current_chunk:
  87. # create sentence A
  88. a_end = 1
  89. if len(current_chunk) >= 2:
  90. a_end = rng.randint(1, len(current_chunk) - 1)
  91. tokens_a = []
  92. for j in range(a_end):
  93. tokens_a.extend([current_chunk[j]])
  94. tokens_b = []
  95. # Random next
  96. is_random_next = False
  97. if len(current_chunk) == 1 or rng.random() < 0.5:
  98. is_random_next = True
  99. target_b_length = target_seq_length - len(tokens_a)
  100. for _ in range(10):
  101. random_document_index = rng.randint(
  102. 0, len(all_document) - 1)
  103. if random_document_index != doc_id:
  104. break
  105. # If picked random document is the same as the current document
  106. if random_document_index == doc_id:
  107. is_random_next = False
  108. random_document = all_document[random_document_index]
  109. random_start = rng.randint(0, len(random_document) - 1)
  110. for j in range(random_start, len(random_document)):
  111. tokens_b.extend([random_document[j]])
  112. if len(tokens_b) >= target_b_length:
  113. break
  114. # We didn't actually use these segments so we "put them back" so
  115. # they don't go to waste.
  116. num_unused_segments = len(current_chunk) - a_end
  117. i -= num_unused_segments
  118. # Actual next
  119. else:
  120. is_random_next = False
  121. for j in range(a_end, len(current_chunk)):
  122. tokens_b.extend([current_chunk[j]])
  123. truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
  124. assert len(tokens_a) >= 1
  125. assert len(tokens_b) >= 1
  126. tokens = []
  127. segment_ids = []
  128. tokens.append("[CLS]")
  129. segment_ids.append(0)
  130. for token in tokens_a:
  131. tokens.append(token)
  132. segment_ids.append(0)
  133. tokens.append("[SEP]")
  134. segment_ids.append(0)
  135. for token in tokens_b:
  136. tokens.append(token)
  137. segment_ids.append(1)
  138. tokens.append("[SEP]")
  139. segment_ids.append(1)
  140. (tokens, masked_lm_positions, masked_lm_labels) = create_masked_lm_predictions(
  141. tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
  142. instance = TrainingInstance(
  143. tokens=tokens,
  144. segment_ids=segment_ids,
  145. is_random_next=is_random_next,
  146. masked_lm_positions=masked_lm_positions,
  147. masked_lm_labels=masked_lm_labels)
  148. instances.append(instance)
  149. current_chunk = []
  150. current_length = 0
  151. i += 1
  152. return instances
  153. def convert_instance_to_data(instances, tokenizer, max_seq_length, max_predictions_per_seq):
  154. num_instances = len(instances)
  155. input_ids_list = np.zeros([num_instances, max_seq_length], dtype="int32")
  156. input_mask_list = np.zeros([num_instances, max_seq_length], dtype="int32")
  157. segment_ids_list = np.zeros([num_instances, max_seq_length], dtype="int32")
  158. masked_lm_positions_list = np.zeros(
  159. [num_instances, max_predictions_per_seq], dtype="int32")
  160. masked_lm_ids_list = np.zeros(
  161. [num_instances, max_predictions_per_seq], dtype="int32")
  162. next_sentence_labels_list = np.zeros(num_instances, dtype="int32")
  163. for (idx, instance) in enumerate(instances):
  164. input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
  165. input_mask = [1] * len(input_ids)
  166. segment_ids = list(instance.segment_ids)
  167. assert len(input_ids) <= max_seq_length
  168. while len(input_ids) < max_seq_length:
  169. input_ids.append(0)
  170. input_mask.append(0)
  171. segment_ids.append(0)
  172. assert len(input_ids) == max_seq_length
  173. assert len(input_mask) == max_seq_length
  174. assert len(segment_ids) == max_seq_length
  175. masked_lm_positions = list(instance.masked_lm_positions)
  176. masked_lm_ids = tokenizer.convert_tokens_to_ids(
  177. instance.masked_lm_labels)
  178. while len(masked_lm_positions) < max_predictions_per_seq:
  179. masked_lm_positions.append(0)
  180. masked_lm_ids.append(0)
  181. next_sentence_label = 1 if instance.is_random_next else 0
  182. input_ids_list[idx][:] = input_ids
  183. input_mask_list[idx][:] = input_mask
  184. segment_ids_list[idx][:] = segment_ids
  185. masked_lm_positions_list[idx][:] = masked_lm_ids
  186. next_sentence_labels_list[idx] = next_sentence_label
  187. return input_ids_list, input_mask_list, segment_ids_list, masked_lm_positions_list, next_sentence_labels_list
  188. def create_pretrain_data(dataset, tokenizer, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, rng):
  189. documents = []
  190. for i in range(dataset['train'].shape[0]):
  191. tokens = tokenizer.tokenize(dataset['train'][i]['text'])
  192. documents.append(tokens)
  193. print(len(tokens))
  194. vocab_words = list(tokenizer.vocab.keys())
  195. instances = []
  196. for doc_id in range(len(documents)):
  197. instances.extend(create_data_from_document(documents, doc_id,
  198. max_seq_length, short_seq_prob, masked_lm_prob,
  199. max_predictions_per_seq, vocab_words, rng))
  200. # instance:
  201. # tokens
  202. # segment_ids
  203. # is_random_next
  204. # masked_lm_positions
  205. # masked_lm_labels
  206. return convert_instance_to_data(instances, tokenizer, max_seq_length, max_predictions_per_seq)
  207. def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
  208. """Truncates a pair of sequences to a maximum sequence length."""
  209. while True:
  210. total_length = len(tokens_a) + len(tokens_b)
  211. if total_length <= max_num_tokens:
  212. break
  213. trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
  214. assert len(trunc_tokens) >= 1
  215. # add more randomness and avoid biases.
  216. if rng.random() < 0.5:
  217. del trunc_tokens[0]
  218. else:
  219. trunc_tokens.pop()
  220. def show_dataset_detail(dataset):
  221. print(dataset.shape)
  222. print(dataset.column_names)
  223. print(dataset['train'].features)
  224. print(dataset['train'][0]['text'])
  225. if __name__ == "__main__":
  226. max_seq_length = 512
  227. do_lower_case = True
  228. short_seq_prob = 0.1
  229. masked_lm_prob = 0.15
  230. max_predictions_per_seq = 20
  231. vocab_path = "/home/xiaonan/develope/Athena/datasets/bert-base-uncased-vocab.txt"
  232. dataset = load_dataset(
  233. '/home/xiaonan/develope/Athena/examples/nlp/bookcorpus', cache_dir=".")
  234. print("total number of documents {} ".format(dataset['train'].shape[0]))
  235. random_seed = 123
  236. rng = random.Random(random_seed)
  237. tokenizer = hetu.BertTokenizer(
  238. vocab_file=vocab_path, do_lower_case=do_lower_case)
  239. input_ids_list, input_mask_list, segment_ids_list, masked_lm_positions_list, next_sentence_labels_list = create_pretrain_data(
  240. dataset, tokenizer, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, rng)
  241. print(input_ids_list[-1])
  242. print(input_mask_list[-1])
  243. print(segment_ids_list[-1])
  244. print(masked_lm_positions_list[-1])
  245. print(next_sentence_labels_list[-1])