|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import os
- import wget
- import tarfile
- import errno
- import sentencepiece as spm
- import re
- from hparams import Hparams
- import logging
-
- logging.basicConfig(level=logging.INFO)
-
-
- def prepro(hp):
- """Load raw data -> Preprocessing -> Segmenting with sentencepice
- hp: hyperparams. argparse.
- """
- logging.info("# Check if raw files exist")
- train1 = "iwslt2016/de-en/train.tags.de-en.de"
- train2 = "iwslt2016/de-en/train.tags.de-en.en"
- eval1 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.de.xml"
- eval2 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.en.xml"
- test1 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.de.xml"
- test2 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.en.xml"
- for f in (train1, train2, eval1, eval2, test1, test2):
- if not os.path.isfile(f):
- raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), f)
-
- logging.info("# Preprocessing")
- # train
-
- def _prepro(x): return [line.strip() for line in open(x, 'r').read().split("\n")
- if not line.startswith("<")]
- prepro_train1, prepro_train2 = _prepro(train1), _prepro(train2)
- assert len(prepro_train1) == len(
- prepro_train2), "Check if train source and target files match."
-
- # eval
- def _prepro(x): return [re.sub("<[^>]+>", "", line).strip()
- for line in open(x, 'r').read().split("\n")
- if line.startswith("<seg id")]
- prepro_eval1, prepro_eval2 = _prepro(eval1), _prepro(eval2)
- assert len(prepro_eval1) == len(
- prepro_eval2), "Check if eval source and target files match."
-
- # test
- prepro_test1, prepro_test2 = _prepro(test1), _prepro(test2)
- assert len(prepro_test1) == len(
- prepro_test2), "Check if test source and target files match."
-
- logging.info("Let's see how preprocessed data look like")
- logging.info("prepro_train1:", prepro_train1[0])
- logging.info("prepro_train2:", prepro_train2[0])
- logging.info("prepro_eval1:", prepro_eval1[0])
- logging.info("prepro_eval2:", prepro_eval2[0])
- logging.info("prepro_test1:", prepro_test1[0])
- logging.info("prepro_test2:", prepro_test2[0])
-
- logging.info("# write preprocessed files to disk")
- os.makedirs("iwslt2016/prepro", exist_ok=True)
-
- def _write(sents, fname):
- with open(fname, 'w') as fout:
- fout.write("\n".join(sents))
-
- _write(prepro_train1, "iwslt2016/prepro/train.de")
- _write(prepro_train2, "iwslt2016/prepro/train.en")
- _write(prepro_train1+prepro_train2, "iwslt2016/prepro/train")
- _write(prepro_eval1, "iwslt2016/prepro/eval.de")
- _write(prepro_eval2, "iwslt2016/prepro/eval.en")
- _write(prepro_test1, "iwslt2016/prepro/test.de")
- _write(prepro_test2, "iwslt2016/prepro/test.en")
-
- logging.info("# Train a joint BPE model with sentencepiece")
- os.makedirs("iwslt2016/segmented", exist_ok=True)
- train = '--input=iwslt2016/prepro/train --pad_id=0 --unk_id=1 \
- --bos_id=2 --eos_id=3\
- --model_prefix=iwslt2016/segmented/bpe --vocab_size={} \
- --model_type=bpe'.format(hp.vocab_size)
- spm.SentencePieceTrainer.Train(train)
-
- logging.info("# Load trained bpe model")
- sp = spm.SentencePieceProcessor()
- sp.Load("iwslt2016/segmented/bpe.model")
-
- logging.info("# Segment")
-
- def _segment_and_write(sents, fname):
- with open(fname, "w") as fout:
- for sent in sents:
- pieces = sp.EncodeAsPieces(sent)
- fout.write(" ".join(pieces) + "\n")
-
- _segment_and_write(prepro_train1, "iwslt2016/segmented/train.de.bpe")
- _segment_and_write(prepro_train2, "iwslt2016/segmented/train.en.bpe")
- _segment_and_write(prepro_eval1, "iwslt2016/segmented/eval.de.bpe")
- _segment_and_write(prepro_eval2, "iwslt2016/segmented/eval.en.bpe")
- _segment_and_write(prepro_test1, "iwslt2016/segmented/test.de.bpe")
-
- logging.info("Let's see how segmented data look like")
- print("train1:", open("iwslt2016/segmented/train.de.bpe", 'r').readline())
- print("train2:", open("iwslt2016/segmented/train.en.bpe", 'r').readline())
- print("eval1:", open("iwslt2016/segmented/eval.de.bpe", 'r').readline())
- print("eval2:", open("iwslt2016/segmented/eval.en.bpe", 'r').readline())
- print("test1:", open("iwslt2016/segmented/test.de.bpe", 'r').readline())
-
-
- if __name__ == '__main__':
- if not os.path.exists('iwslt2016'):
- os.mkdir('iwslt2016')
- os.chdir('iwslt2016')
- file_name = 'de-en.tgz'
- if not os.path.exists(file_name):
- print('Downloading iwslt2016...')
- url = 'https://wit3.fbk.eu/archive/2016-01//texts/de/en/de-en.tgz'
- file_name = wget.download(url)
- print()
- if not os.path.exists('de-en'):
- print('Extracting iwslt2016...')
- with tarfile.open(file_name) as tar:
- tar.extractall('./')
-
- os.chdir('../')
- hparams = Hparams()
- parser = hparams.parser
- hp = parser.parse_args()
- print('Preprocessing iwslt2016...')
- prepro(hp)
- logging.info("Done")
|