|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- import numpy as np
- import tensorflow as tf
-
-
- def tf_conv_pool(x, in_channel, out_channel):
- weight = tf.Variable(np.random.normal(scale=0.1, size=(
- out_channel, in_channel, 5, 5)).transpose([2, 3, 1, 0]).astype(np.float32))
- x = tf.nn.conv2d(x, weight, padding='SAME', strides=[1, 1, 1, 1])
- x = tf.nn.relu(x)
- x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
- padding='VALID', strides=[1, 2, 2, 1])
- return x
-
-
- def tf_fc(x, shape, with_relu=True):
- weight = tf.Variable(np.random.normal(
- scale=0.1, size=shape).astype(np.float32))
- bias = tf.Variable(np.random.normal(
- scale=0.1, size=shape[-1:]).astype(np.float32))
- x = tf.matmul(x, weight) + bias
- if with_relu:
- x = tf.nn.relu(x)
- return x
-
-
- def tf_lenet(x, y_):
- '''
- LeNet model in TensorFlow, for MNIST dataset.
-
- Parameters:
- x: Variable(tensorflow.python.framework.ops.Tensor), shape (N, dims)
- y_: Variable(tensorflow.python.framework.ops.Tensor), shape (N, num_classes)
- Return:
- loss: Variable(tensorflow.python.framework.ops.Tensor), shape (1,)
- y: Variable(tensorflow.python.framework.ops.Tensor), shape (N, num_classes)
- '''
-
- print('Building LeNet model in tensorflow...')
- x = tf.reshape(x, [-1, 28, 28, 1])
- x = tf_conv_pool(x, 1, 6)
- x = tf_conv_pool(x, 6, 16)
- x = tf.transpose(x, [0, 3, 1, 2])
- x = tf.reshape(x, (-1, 7*7*16))
- x = tf_fc(x, (7*7*16, 120), with_relu=True)
- x = tf_fc(x, (120, 84), with_relu=True)
- y = tf_fc(x, (84, 10), with_relu=False)
- loss = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
- loss = tf.reduce_mean(loss)
- return loss, y
|