|
- *> \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGEGV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
- * BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVL, JOBVR
- * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- * $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
- * $ VR( LDVR, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine SGGEV.
- *>
- *> SGEGV computes the eigenvalues and, optionally, the left and/or right
- *> eigenvectors of a real matrix pair (A,B).
- *> Given two square matrices A and B,
- *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
- *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
- *> that
- *>
- *> A*x = lambda*B*x.
- *>
- *> An alternate form is to find the eigenvalues mu and corresponding
- *> eigenvectors y such that
- *>
- *> mu*A*y = B*y.
- *>
- *> These two forms are equivalent with mu = 1/lambda and x = y if
- *> neither lambda nor mu is zero. In order to deal with the case that
- *> lambda or mu is zero or small, two values alpha and beta are returned
- *> for each eigenvalue, such that lambda = alpha/beta and
- *> mu = beta/alpha.
- *>
- *> The vectors x and y in the above equations are right eigenvectors of
- *> the matrix pair (A,B). Vectors u and v satisfying
- *>
- *> u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
- *>
- *> are left eigenvectors of (A,B).
- *>
- *> Note: this routine performs "full balancing" on A and B
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVL
- *> \verbatim
- *> JOBVL is CHARACTER*1
- *> = 'N': do not compute the left generalized eigenvectors;
- *> = 'V': compute the left generalized eigenvectors (returned
- *> in VL).
- *> \endverbatim
- *>
- *> \param[in] JOBVR
- *> \verbatim
- *> JOBVR is CHARACTER*1
- *> = 'N': do not compute the right generalized eigenvectors;
- *> = 'V': compute the right generalized eigenvectors (returned
- *> in VR).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A, B, VL, and VR. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA, N)
- *> On entry, the matrix A.
- *> If JOBVL = 'V' or JOBVR = 'V', then on exit A
- *> contains the real Schur form of A from the generalized Schur
- *> factorization of the pair (A,B) after balancing.
- *> If no eigenvectors were computed, then only the diagonal
- *> blocks from the Schur form will be correct. See SGGHRD and
- *> SHGEQZ for details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB, N)
- *> On entry, the matrix B.
- *> If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
- *> upper triangular matrix obtained from B in the generalized
- *> Schur factorization of the pair (A,B) after balancing.
- *> If no eigenvectors were computed, then only those elements of
- *> B corresponding to the diagonal blocks from the Schur form of
- *> A will be correct. See SGGHRD and SHGEQZ for details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] ALPHAR
- *> \verbatim
- *> ALPHAR is REAL array, dimension (N)
- *> The real parts of each scalar alpha defining an eigenvalue of
- *> GNEP.
- *> \endverbatim
- *>
- *> \param[out] ALPHAI
- *> \verbatim
- *> ALPHAI is REAL array, dimension (N)
- *> The imaginary parts of each scalar alpha defining an
- *> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
- *> eigenvalue is real; if positive, then the j-th and
- *> (j+1)-st eigenvalues are a complex conjugate pair, with
- *> ALPHAI(j+1) = -ALPHAI(j).
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is REAL array, dimension (N)
- *> The scalars beta that define the eigenvalues of GNEP.
- *>
- *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
- *> beta = BETA(j) represent the j-th eigenvalue of the matrix
- *> pair (A,B), in one of the forms lambda = alpha/beta or
- *> mu = beta/alpha. Since either lambda or mu may overflow,
- *> they should not, in general, be computed.
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is REAL array, dimension (LDVL,N)
- *> If JOBVL = 'V', the left eigenvectors u(j) are stored
- *> in the columns of VL, in the same order as their eigenvalues.
- *> If the j-th eigenvalue is real, then u(j) = VL(:,j).
- *> If the j-th and (j+1)-st eigenvalues form a complex conjugate
- *> pair, then
- *> u(j) = VL(:,j) + i*VL(:,j+1)
- *> and
- *> u(j+1) = VL(:,j) - i*VL(:,j+1).
- *>
- *> Each eigenvector is scaled so that its largest component has
- *> abs(real part) + abs(imag. part) = 1, except for eigenvectors
- *> corresponding to an eigenvalue with alpha = beta = 0, which
- *> are set to zero.
- *> Not referenced if JOBVL = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> The leading dimension of the matrix VL. LDVL >= 1, and
- *> if JOBVL = 'V', LDVL >= N.
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is REAL array, dimension (LDVR,N)
- *> If JOBVR = 'V', the right eigenvectors x(j) are stored
- *> in the columns of VR, in the same order as their eigenvalues.
- *> If the j-th eigenvalue is real, then x(j) = VR(:,j).
- *> If the j-th and (j+1)-st eigenvalues form a complex conjugate
- *> pair, then
- *> x(j) = VR(:,j) + i*VR(:,j+1)
- *> and
- *> x(j+1) = VR(:,j) - i*VR(:,j+1).
- *>
- *> Each eigenvector is scaled so that its largest component has
- *> abs(real part) + abs(imag. part) = 1, except for eigenvalues
- *> corresponding to an eigenvalue with alpha = beta = 0, which
- *> are set to zero.
- *> Not referenced if JOBVR = 'N'.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> The leading dimension of the matrix VR. LDVR >= 1, and
- *> if JOBVR = 'V', LDVR >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,8*N).
- *> For good performance, LWORK must generally be larger.
- *> To compute the optimal value of LWORK, call ILAENV to get
- *> blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
- *> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR;
- *> The optimal LWORK is:
- *> 2*N + MAX( 6*N, N*(NB+1) ).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1,...,N:
- *> The QZ iteration failed. No eigenvectors have been
- *> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
- *> should be correct for j=INFO+1,...,N.
- *> > N: errors that usually indicate LAPACK problems:
- *> =N+1: error return from SGGBAL
- *> =N+2: error return from SGEQRF
- *> =N+3: error return from SORMQR
- *> =N+4: error return from SORGQR
- *> =N+5: error return from SGGHRD
- *> =N+6: error return from SHGEQZ (other than failed
- *> iteration)
- *> =N+7: error return from STGEVC
- *> =N+8: error return from SGGBAK (computing VL)
- *> =N+9: error return from SGGBAK (computing VR)
- *> =N+10: error return from SLASCL (various calls)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup realGEeigen
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Balancing
- *> ---------
- *>
- *> This driver calls SGGBAL to both permute and scale rows and columns
- *> of A and B. The permutations PL and PR are chosen so that PL*A*PR
- *> and PL*B*R will be upper triangular except for the diagonal blocks
- *> A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
- *> possible. The diagonal scaling matrices DL and DR are chosen so
- *> that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
- *> one (except for the elements that start out zero.)
- *>
- *> After the eigenvalues and eigenvectors of the balanced matrices
- *> have been computed, SGGBAK transforms the eigenvectors back to what
- *> they would have been (in perfect arithmetic) if they had not been
- *> balanced.
- *>
- *> Contents of A and B on Exit
- *> -------- -- - --- - -- ----
- *>
- *> If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
- *> both), then on exit the arrays A and B will contain the real Schur
- *> form[*] of the "balanced" versions of A and B. If no eigenvectors
- *> are computed, then only the diagonal blocks will be correct.
- *>
- *> [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations",
- *> by Golub & van Loan, pub. by Johns Hopkins U. Press.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
- $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVL, JOBVR
- INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
- $ VR( LDVR, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ILIMIT, ILV, ILVL, ILVR, LQUERY
- CHARACTER CHTEMP
- INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
- $ LWKMIN, LWKOPT, NB, NB1, NB2, NB3
- REAL ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
- $ BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
- $ SALFAI, SALFAR, SBETA, SCALE, TEMP
- * ..
- * .. Local Arrays ..
- LOGICAL LDUMMA( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
- $ SLASCL, SLASET, SORGQR, SORMQR, STGEVC, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL SLAMCH, SLANGE
- EXTERNAL ILAENV, LSAME, SLAMCH, SLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, MAX
- * ..
- * .. Executable Statements ..
- *
- * Decode the input arguments
- *
- IF( LSAME( JOBVL, 'N' ) ) THEN
- IJOBVL = 1
- ILVL = .FALSE.
- ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
- IJOBVL = 2
- ILVL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVL = .FALSE.
- END IF
- *
- IF( LSAME( JOBVR, 'N' ) ) THEN
- IJOBVR = 1
- ILVR = .FALSE.
- ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
- IJOBVR = 2
- ILVR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVR = .FALSE.
- END IF
- ILV = ILVL .OR. ILVR
- *
- * Test the input arguments
- *
- LWKMIN = MAX( 8*N, 1 )
- LWKOPT = LWKMIN
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- INFO = 0
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
- INFO = -12
- ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
- INFO = -14
- ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -16
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- NB1 = ILAENV( 1, 'SGEQRF', ' ', N, N, -1, -1 )
- NB2 = ILAENV( 1, 'SORMQR', ' ', N, N, N, -1 )
- NB3 = ILAENV( 1, 'SORGQR', ' ', N, N, N, -1 )
- NB = MAX( NB1, NB2, NB3 )
- LOPT = 2*N + MAX( 6*N, N*(NB+1) )
- WORK( 1 ) = LOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGEGV ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
- SAFMIN = SLAMCH( 'S' )
- SAFMIN = SAFMIN + SAFMIN
- SAFMAX = ONE / SAFMIN
- ONEPLS = ONE + ( 4*EPS )
- *
- * Scale A
- *
- ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
- ANRM1 = ANRM
- ANRM2 = ONE
- IF( ANRM.LT.ONE ) THEN
- IF( SAFMAX*ANRM.LT.ONE ) THEN
- ANRM1 = SAFMIN
- ANRM2 = SAFMAX*ANRM
- END IF
- END IF
- *
- IF( ANRM.GT.ZERO ) THEN
- CALL SLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 10
- RETURN
- END IF
- END IF
- *
- * Scale B
- *
- BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
- BNRM1 = BNRM
- BNRM2 = ONE
- IF( BNRM.LT.ONE ) THEN
- IF( SAFMAX*BNRM.LT.ONE ) THEN
- BNRM1 = SAFMIN
- BNRM2 = SAFMAX*BNRM
- END IF
- END IF
- *
- IF( BNRM.GT.ZERO ) THEN
- CALL SLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 10
- RETURN
- END IF
- END IF
- *
- * Permute the matrix to make it more nearly triangular
- * Workspace layout: (8*N words -- "work" requires 6*N words)
- * left_permutation, right_permutation, work...
- *
- ILEFT = 1
- IRIGHT = N + 1
- IWORK = IRIGHT + N
- CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), WORK( IWORK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 1
- GO TO 120
- END IF
- *
- * Reduce B to triangular form, and initialize VL and/or VR
- * Workspace layout: ("work..." must have at least N words)
- * left_permutation, right_permutation, tau, work...
- *
- IROWS = IHI + 1 - ILO
- IF( ILV ) THEN
- ICOLS = N + 1 - ILO
- ELSE
- ICOLS = IROWS
- END IF
- ITAU = IWORK
- IWORK = ITAU + IROWS
- CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 2
- GO TO 120
- END IF
- *
- CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
- $ LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 3
- GO TO 120
- END IF
- *
- IF( ILVL ) THEN
- CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
- CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VL( ILO+1, ILO ), LDVL )
- CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
- $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
- $ IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 4
- GO TO 120
- END IF
- END IF
- *
- IF( ILVR )
- $ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
- *
- * Reduce to generalized Hessenberg form
- *
- IF( ILV ) THEN
- *
- * Eigenvectors requested -- work on whole matrix.
- *
- CALL SGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
- $ LDVL, VR, LDVR, IINFO )
- ELSE
- CALL SGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
- $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
- END IF
- IF( IINFO.NE.0 ) THEN
- INFO = N + 5
- GO TO 120
- END IF
- *
- * Perform QZ algorithm
- * Workspace layout: ("work..." must have at least 1 word)
- * left_permutation, right_permutation, work...
- *
- IWORK = ITAU
- IF( ILV ) THEN
- CHTEMP = 'S'
- ELSE
- CHTEMP = 'E'
- END IF
- CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
- INFO = IINFO
- ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
- INFO = IINFO - N
- ELSE
- INFO = N + 6
- END IF
- GO TO 120
- END IF
- *
- IF( ILV ) THEN
- *
- * Compute Eigenvectors (STGEVC requires 6*N words of workspace)
- *
- IF( ILVL ) THEN
- IF( ILVR ) THEN
- CHTEMP = 'B'
- ELSE
- CHTEMP = 'L'
- END IF
- ELSE
- CHTEMP = 'R'
- END IF
- *
- CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
- $ VR, LDVR, N, IN, WORK( IWORK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 7
- GO TO 120
- END IF
- *
- * Undo balancing on VL and VR, rescale
- *
- IF( ILVL ) THEN
- CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VL, LDVL, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 8
- GO TO 120
- END IF
- DO 50 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 50
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 10 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
- 10 CONTINUE
- ELSE
- DO 20 JR = 1, N
- TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
- $ ABS( VL( JR, JC+1 ) ) )
- 20 CONTINUE
- END IF
- IF( TEMP.LT.SAFMIN )
- $ GO TO 50
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 30 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- 30 CONTINUE
- ELSE
- DO 40 JR = 1, N
- VL( JR, JC ) = VL( JR, JC )*TEMP
- VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
- 40 CONTINUE
- END IF
- 50 CONTINUE
- END IF
- IF( ILVR ) THEN
- CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VR, LDVR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- GO TO 120
- END IF
- DO 100 JC = 1, N
- IF( ALPHAI( JC ).LT.ZERO )
- $ GO TO 100
- TEMP = ZERO
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 60 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
- 60 CONTINUE
- ELSE
- DO 70 JR = 1, N
- TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
- $ ABS( VR( JR, JC+1 ) ) )
- 70 CONTINUE
- END IF
- IF( TEMP.LT.SAFMIN )
- $ GO TO 100
- TEMP = ONE / TEMP
- IF( ALPHAI( JC ).EQ.ZERO ) THEN
- DO 80 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- 80 CONTINUE
- ELSE
- DO 90 JR = 1, N
- VR( JR, JC ) = VR( JR, JC )*TEMP
- VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
- 90 CONTINUE
- END IF
- 100 CONTINUE
- END IF
- *
- * End of eigenvector calculation
- *
- END IF
- *
- * Undo scaling in alpha, beta
- *
- * Note: this does not give the alpha and beta for the unscaled
- * problem.
- *
- * Un-scaling is limited to avoid underflow in alpha and beta
- * if they are significant.
- *
- DO 110 JC = 1, N
- ABSAR = ABS( ALPHAR( JC ) )
- ABSAI = ABS( ALPHAI( JC ) )
- ABSB = ABS( BETA( JC ) )
- SALFAR = ANRM*ALPHAR( JC )
- SALFAI = ANRM*ALPHAI( JC )
- SBETA = BNRM*BETA( JC )
- ILIMIT = .FALSE.
- SCALE = ONE
- *
- * Check for significant underflow in ALPHAI
- *
- IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
- $ MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
- ILIMIT = .TRUE.
- SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
- $ MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
- *
- ELSE IF( SALFAI.EQ.ZERO ) THEN
- *
- * If insignificant underflow in ALPHAI, then make the
- * conjugate eigenvalue real.
- *
- IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
- ALPHAI( JC-1 ) = ZERO
- ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
- ALPHAI( JC+1 ) = ZERO
- END IF
- END IF
- *
- * Check for significant underflow in ALPHAR
- *
- IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
- $ MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
- ILIMIT = .TRUE.
- SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
- $ MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
- END IF
- *
- * Check for significant underflow in BETA
- *
- IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
- $ MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
- ILIMIT = .TRUE.
- SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
- $ MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
- END IF
- *
- * Check for possible overflow when limiting scaling
- *
- IF( ILIMIT ) THEN
- TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
- $ ABS( SBETA ) )
- IF( TEMP.GT.ONE )
- $ SCALE = SCALE / TEMP
- IF( SCALE.LT.ONE )
- $ ILIMIT = .FALSE.
- END IF
- *
- * Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
- *
- IF( ILIMIT ) THEN
- SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
- SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
- SBETA = ( SCALE*BETA( JC ) )*BNRM
- END IF
- ALPHAR( JC ) = SALFAR
- ALPHAI( JC ) = SALFAI
- BETA( JC ) = SBETA
- 110 CONTINUE
- *
- 120 CONTINUE
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of SGEGV
- *
- END
|