|
- *> \brief \b CDRVGE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- * RWORK, IWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NOUT, NRHS
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NVAL( * )
- * REAL RWORK( * ), S( * )
- * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
- * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVGE tests the driver routines CGESV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix column dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The maximum value permitted for N, used in dimensioning the
- *> work arrays.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] BSAV
- *> \verbatim
- *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is COMPLEX array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (2*NMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (2*NRHS+NMAX)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
- $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
- $ RWORK, IWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NOUT, NRHS
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NVAL( * )
- REAL RWORK( * ), S( * )
- COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
- $ BSAV( * ), WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 11 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 7 )
- INTEGER NTRAN
- PARAMETER ( NTRAN = 3 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
- CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
- CHARACTER*3 PATH
- INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
- $ IZERO, K, K1, KL, KU, LDA, LWORK, MODE, N, NB,
- $ NBMIN, NERRS, NFACT, NFAIL, NIMAT, NRUN, NT
- REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
- $ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
- $ ROLDI, ROLDO, ROWCND, RPVGRW
- * ..
- * .. Local Arrays ..
- CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- REAL RDUM( 1 ), RESULT( NTESTS )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANGE, CLANTR, SGET06, SLAMCH
- EXTERNAL LSAME, CLANGE, CLANTR, SGET06, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGEEQU, CGESV,
- $ CGESVX, CGET01, CGET02, CGET04, CGET07, CGETRF,
- $ CGETRI, CLACPY, CLAQGE, CLARHS, CLASET, CLATB4,
- $ CLATMS, XLAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CMPLX, MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA TRANSS / 'N', 'T', 'C' /
- DATA FACTS / 'F', 'N', 'E' /
- DATA EQUEDS / 'N', 'R', 'C', 'B' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Complex precision'
- PATH( 2: 3 ) = 'GE'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL CERRVX( PATH, NOUT )
- INFOT = 0
- *
- * Set the block size and minimum block size for testing.
- *
- NB = 1
- NBMIN = 2
- CALL XLAENV( 1, NB )
- CALL XLAENV( 2, NBMIN )
- *
- * Do for each value of N in NVAL
- *
- DO 90 IN = 1, NN
- N = NVAL( IN )
- LDA = MAX( N, 1 )
- XTYPE = 'N'
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 80 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 80
- *
- * Skip types 5, 6, or 7 if the matrix size is too small.
- *
- ZEROT = IMAT.GE.5 .AND. IMAT.LE.7
- IF( ZEROT .AND. N.LT.IMAT-4 )
- $ GO TO 80
- *
- * Set up parameters with CLATB4 and generate a test matrix
- * with CLATMS.
- *
- CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ CNDNUM, DIST )
- RCONDC = ONE / CNDNUM
- *
- SRNAMT = 'CLATMS'
- CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
- $ ANORM, KL, KU, 'No packing', A, LDA, WORK,
- $ INFO )
- *
- * Check error code from CLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, -1, -1,
- $ -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 80
- END IF
- *
- * For types 5-7, zero one or more columns of the matrix to
- * test that INFO is returned correctly.
- *
- IF( ZEROT ) THEN
- IF( IMAT.EQ.5 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.6 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- IOFF = ( IZERO-1 )*LDA
- IF( IMAT.LT.7 ) THEN
- DO 20 I = 1, N
- A( IOFF+I ) = ZERO
- 20 CONTINUE
- ELSE
- CALL CLASET( 'Full', N, N-IZERO+1, CMPLX( ZERO ),
- $ CMPLX( ZERO ), A( IOFF+1 ), LDA )
- END IF
- ELSE
- IZERO = 0
- END IF
- *
- * Save a copy of the matrix A in ASAV.
- *
- CALL CLACPY( 'Full', N, N, A, LDA, ASAV, LDA )
- *
- DO 70 IEQUED = 1, 4
- EQUED = EQUEDS( IEQUED )
- IF( IEQUED.EQ.1 ) THEN
- NFACT = 3
- ELSE
- NFACT = 1
- END IF
- *
- DO 60 IFACT = 1, NFACT
- FACT = FACTS( IFACT )
- PREFAC = LSAME( FACT, 'F' )
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- *
- IF( ZEROT ) THEN
- IF( PREFAC )
- $ GO TO 60
- RCONDO = ZERO
- RCONDI = ZERO
- *
- ELSE IF( .NOT.NOFACT ) THEN
- *
- * Compute the condition number for comparison with
- * the value returned by CGESVX (FACT = 'N' reuses
- * the condition number from the previous iteration
- * with FACT = 'F').
- *
- CALL CLACPY( 'Full', N, N, ASAV, LDA, AFAC, LDA )
- IF( EQUIL .OR. IEQUED.GT.1 ) THEN
- *
- * Compute row and column scale factors to
- * equilibrate the matrix A.
- *
- CALL CGEEQU( N, N, AFAC, LDA, S, S( N+1 ),
- $ ROWCND, COLCND, AMAX, INFO )
- IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
- IF( LSAME( EQUED, 'R' ) ) THEN
- ROWCND = ZERO
- COLCND = ONE
- ELSE IF( LSAME( EQUED, 'C' ) ) THEN
- ROWCND = ONE
- COLCND = ZERO
- ELSE IF( LSAME( EQUED, 'B' ) ) THEN
- ROWCND = ZERO
- COLCND = ZERO
- END IF
- *
- * Equilibrate the matrix.
- *
- CALL CLAQGE( N, N, AFAC, LDA, S, S( N+1 ),
- $ ROWCND, COLCND, AMAX, EQUED )
- END IF
- END IF
- *
- * Save the condition number of the non-equilibrated
- * system for use in CGET04.
- *
- IF( EQUIL ) THEN
- ROLDO = RCONDO
- ROLDI = RCONDI
- END IF
- *
- * Compute the 1-norm and infinity-norm of A.
- *
- ANORMO = CLANGE( '1', N, N, AFAC, LDA, RWORK )
- ANORMI = CLANGE( 'I', N, N, AFAC, LDA, RWORK )
- *
- * Factor the matrix A.
- *
- SRNAMT = 'CGETRF'
- CALL CGETRF( N, N, AFAC, LDA, IWORK, INFO )
- *
- * Form the inverse of A.
- *
- CALL CLACPY( 'Full', N, N, AFAC, LDA, A, LDA )
- LWORK = NMAX*MAX( 3, NRHS )
- SRNAMT = 'CGETRI'
- CALL CGETRI( N, A, LDA, IWORK, WORK, LWORK, INFO )
- *
- * Compute the 1-norm condition number of A.
- *
- AINVNM = CLANGE( '1', N, N, A, LDA, RWORK )
- IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDO = ONE
- ELSE
- RCONDO = ( ONE / ANORMO ) / AINVNM
- END IF
- *
- * Compute the infinity-norm condition number of A.
- *
- AINVNM = CLANGE( 'I', N, N, A, LDA, RWORK )
- IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDI = ONE
- ELSE
- RCONDI = ( ONE / ANORMI ) / AINVNM
- END IF
- END IF
- *
- DO 50 ITRAN = 1, NTRAN
- *
- * Do for each value of TRANS.
- *
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- RCONDC = RCONDO
- ELSE
- RCONDC = RCONDI
- END IF
- *
- * Restore the matrix A.
- *
- CALL CLACPY( 'Full', N, N, ASAV, LDA, A, LDA )
- *
- * Form an exact solution and set the right hand side.
- *
- SRNAMT = 'CLARHS'
- CALL CLARHS( PATH, XTYPE, 'Full', TRANS, N, N, KL,
- $ KU, NRHS, A, LDA, XACT, LDA, B, LDA,
- $ ISEED, INFO )
- XTYPE = 'C'
- CALL CLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
- *
- IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
- *
- * --- Test CGESV ---
- *
- * Compute the LU factorization of the matrix and
- * solve the system.
- *
- CALL CLACPY( 'Full', N, N, A, LDA, AFAC, LDA )
- CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'CGESV '
- CALL CGESV( N, NRHS, AFAC, LDA, IWORK, X, LDA,
- $ INFO )
- *
- * Check error code from CGESV .
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'CGESV ', INFO, IZERO,
- $ ' ', N, N, -1, -1, NRHS, IMAT,
- $ NFAIL, NERRS, NOUT )
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CGET01( N, N, A, LDA, AFAC, LDA, IWORK,
- $ RWORK, RESULT( 1 ) )
- NT = 1
- IF( IZERO.EQ.0 ) THEN
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL CGET02( 'No transpose', N, N, NRHS, A,
- $ LDA, X, LDA, WORK, LDA, RWORK,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ RCONDC, RESULT( 3 ) )
- NT = 3
- END IF
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 30 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'CGESV ', N,
- $ IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 30 CONTINUE
- NRUN = NRUN + NT
- END IF
- *
- * --- Test CGESVX ---
- *
- IF( .NOT.PREFAC )
- $ CALL CLASET( 'Full', N, N, CMPLX( ZERO ),
- $ CMPLX( ZERO ), AFAC, LDA )
- CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
- $ CMPLX( ZERO ), X, LDA )
- IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
- *
- * Equilibrate the matrix if FACT = 'F' and
- * EQUED = 'R', 'C', or 'B'.
- *
- CALL CLAQGE( N, N, A, LDA, S, S( N+1 ), ROWCND,
- $ COLCND, AMAX, EQUED )
- END IF
- *
- * Solve the system and compute the condition number
- * and error bounds using CGESVX.
- *
- SRNAMT = 'CGESVX'
- CALL CGESVX( FACT, TRANS, N, NRHS, A, LDA, AFAC,
- $ LDA, IWORK, EQUED, S, S( N+1 ), B,
- $ LDA, X, LDA, RCOND, RWORK,
- $ RWORK( NRHS+1 ), WORK,
- $ RWORK( 2*NRHS+1 ), INFO )
- *
- * Check the error code from CGESVX.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'CGESVX', INFO, IZERO,
- $ FACT // TRANS, N, N, -1, -1, NRHS,
- $ IMAT, NFAIL, NERRS, NOUT )
- *
- * Compare RWORK(2*NRHS+1) from CGESVX with the
- * computed reciprocal pivot growth factor RPVGRW
- *
- IF( INFO.NE.0 .AND. INFO.LE.N) THEN
- RPVGRW = CLANTR( 'M', 'U', 'N', INFO, INFO,
- $ AFAC, LDA, RDUM )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = CLANGE( 'M', N, INFO, A, LDA,
- $ RDUM ) / RPVGRW
- END IF
- ELSE
- RPVGRW = CLANTR( 'M', 'U', 'N', N, N, AFAC, LDA,
- $ RDUM )
- IF( RPVGRW.EQ.ZERO ) THEN
- RPVGRW = ONE
- ELSE
- RPVGRW = CLANGE( 'M', N, N, A, LDA, RDUM ) /
- $ RPVGRW
- END IF
- END IF
- RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) ) /
- $ MAX( RWORK( 2*NRHS+1 ), RPVGRW ) /
- $ SLAMCH( 'E' )
- *
- IF( .NOT.PREFAC ) THEN
- *
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL CGET01( N, N, A, LDA, AFAC, LDA, IWORK,
- $ RWORK( 2*NRHS+1 ), RESULT( 1 ) )
- K1 = 1
- ELSE
- K1 = 2
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- TRFCON = .FALSE.
- *
- * Compute residual of the computed solution.
- *
- CALL CLACPY( 'Full', N, NRHS, BSAV, LDA, WORK,
- $ LDA )
- CALL CGET02( TRANS, N, N, NRHS, ASAV, LDA, X,
- $ LDA, WORK, LDA, RWORK( 2*NRHS+1 ),
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
- $ 'N' ) ) ) THEN
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ RCONDC, RESULT( 3 ) )
- ELSE
- IF( ITRAN.EQ.1 ) THEN
- ROLDC = ROLDO
- ELSE
- ROLDC = ROLDI
- END IF
- CALL CGET04( N, NRHS, X, LDA, XACT, LDA,
- $ ROLDC, RESULT( 3 ) )
- END IF
- *
- * Check the error bounds from iterative
- * refinement.
- *
- CALL CGET07( TRANS, N, NRHS, ASAV, LDA, B, LDA,
- $ X, LDA, XACT, LDA, RWORK, .TRUE.,
- $ RWORK( NRHS+1 ), RESULT( 4 ) )
- ELSE
- TRFCON = .TRUE.
- END IF
- *
- * Compare RCOND from CGESVX with the computed value
- * in RCONDC.
- *
- RESULT( 6 ) = SGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- IF( .NOT.TRFCON ) THEN
- DO 40 K = K1, NTESTS
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'CGESVX',
- $ FACT, TRANS, N, EQUED, IMAT, K,
- $ RESULT( K )
- ELSE
- WRITE( NOUT, FMT = 9998 )'CGESVX',
- $ FACT, TRANS, N, IMAT, K, RESULT( K )
- END IF
- NFAIL = NFAIL + 1
- END IF
- 40 CONTINUE
- NRUN = NRUN + 7 - K1
- ELSE
- IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
- $ THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'CGESVX', FACT,
- $ TRANS, N, EQUED, IMAT, 1, RESULT( 1 )
- ELSE
- WRITE( NOUT, FMT = 9998 )'CGESVX', FACT,
- $ TRANS, N, IMAT, 1, RESULT( 1 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- IF( RESULT( 6 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'CGESVX', FACT,
- $ TRANS, N, EQUED, IMAT, 6, RESULT( 6 )
- ELSE
- WRITE( NOUT, FMT = 9998 )'CGESVX', FACT,
- $ TRANS, N, IMAT, 6, RESULT( 6 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- IF( PREFAC ) THEN
- WRITE( NOUT, FMT = 9997 )'CGESVX', FACT,
- $ TRANS, N, EQUED, IMAT, 7, RESULT( 7 )
- ELSE
- WRITE( NOUT, FMT = 9998 )'CGESVX', FACT,
- $ TRANS, N, IMAT, 7, RESULT( 7 )
- END IF
- NFAIL = NFAIL + 1
- NRUN = NRUN + 1
- END IF
- *
- END IF
- *
- 50 CONTINUE
- 60 CONTINUE
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test(', I2, ') =',
- $ G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
- $ ', type ', I2, ', test(', I1, ')=', G12.5 )
- 9997 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
- $ ', EQUED=''', A1, ''', type ', I2, ', test(', I1, ')=',
- $ G12.5 )
- RETURN
- *
- * End of CDRVGE
- *
- END
|