|
- *> \brief \b SGETRI
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGETRI + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetri.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetri.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetri.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * REAL A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGETRI computes the inverse of a matrix using the LU factorization
- *> computed by SGETRF.
- *>
- *> This method inverts U and then computes inv(A) by solving the system
- *> inv(A)*L = inv(U) for inv(A).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the factors L and U from the factorization
- *> A = P*L*U as computed by SGETRF.
- *> On exit, if INFO = 0, the inverse of the original matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from SGETRF; for 1<=i<=N, row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N).
- *> For optimal performance LWORK >= N*NB, where NB is
- *> the optimal blocksize returned by ILAENV.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
- *> singular and its inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup getri
- *
- * =====================================================================
- SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
- $ NBMIN, NN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- REAL SROUNDUP_LWORK
- EXTERNAL ILAENV, SROUNDUP_LWORK
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- LQUERY = ( LWORK.EQ.-1 )
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -3
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGETRI', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form inv(U). If INFO > 0 from STRTRI, then U is singular,
- * and the inverse is not computed.
- *
- CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
- IF( INFO.GT.0 )
- $ RETURN
- *
- NBMIN = 2
- LDWORK = N
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- IWS = MAX( LDWORK*NB, 1 )
- IF( LWORK.LT.IWS ) THEN
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) )
- END IF
- ELSE
- IWS = N
- END IF
- *
- * Solve the equation inv(A)*L = inv(U) for inv(A).
- *
- IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
- *
- * Use unblocked code.
- *
- DO 20 J = N, 1, -1
- *
- * Copy current column of L to WORK and replace with zeros.
- *
- DO 10 I = J + 1, N
- WORK( I ) = A( I, J )
- A( I, J ) = ZERO
- 10 CONTINUE
- *
- * Compute current column of inv(A).
- *
- IF( J.LT.N )
- $ CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
- $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
- 20 CONTINUE
- ELSE
- *
- * Use blocked code.
- *
- NN = ( ( N-1 ) / NB )*NB + 1
- DO 50 J = NN, 1, -NB
- JB = MIN( NB, N-J+1 )
- *
- * Copy current block column of L to WORK and replace with
- * zeros.
- *
- DO 40 JJ = J, J + JB - 1
- DO 30 I = JJ + 1, N
- WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
- A( I, JJ ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * Compute current block column of inv(A).
- *
- IF( J+JB.LE.N )
- $ CALL SGEMM( 'No transpose', 'No transpose', N, JB,
- $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
- $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
- CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
- $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
- 50 CONTINUE
- END IF
- *
- * Apply column interchanges.
- *
- DO 60 J = N - 1, 1, -1
- JP = IPIV( J )
- IF( JP.NE.J )
- $ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
- 60 CONTINUE
- *
- WORK( 1 ) = SROUNDUP_LWORK(IWS)
- RETURN
- *
- * End of SGETRI
- *
- END
|