|
- *> \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGELSX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
- * WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
- * REAL RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER JPVT( * )
- * REAL A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine SGELSY.
- *>
- *> SGELSX computes the minimum-norm solution to a real linear least
- *> squares problem:
- *> minimize || A * X - B ||
- *> using a complete orthogonal factorization of A. A is an M-by-N
- *> matrix which may be rank-deficient.
- *>
- *> Several right hand side vectors b and solution vectors x can be
- *> handled in a single call; they are stored as the columns of the
- *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- *> matrix X.
- *>
- *> The routine first computes a QR factorization with column pivoting:
- *> A * P = Q * [ R11 R12 ]
- *> [ 0 R22 ]
- *> with R11 defined as the largest leading submatrix whose estimated
- *> condition number is less than 1/RCOND. The order of R11, RANK,
- *> is the effective rank of A.
- *>
- *> Then, R22 is considered to be negligible, and R12 is annihilated
- *> by orthogonal transformations from the right, arriving at the
- *> complete orthogonal factorization:
- *> A * P = Q * [ T11 0 ] * Z
- *> [ 0 0 ]
- *> The minimum-norm solution is then
- *> X = P * Z**T [ inv(T11)*Q1**T*B ]
- *> [ 0 ]
- *> where Q1 consists of the first RANK columns of Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of
- *> columns of matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, A has been overwritten by details of its
- *> complete orthogonal factorization.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the M-by-NRHS right hand side matrix B.
- *> On exit, the N-by-NRHS solution matrix X.
- *> If m >= n and RANK = n, the residual sum-of-squares for
- *> the solution in the i-th column is given by the sum of
- *> squares of elements N+1:M in that column.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,M,N).
- *> \endverbatim
- *>
- *> \param[in,out] JPVT
- *> \verbatim
- *> JPVT is INTEGER array, dimension (N)
- *> On entry, if JPVT(i) .ne. 0, the i-th column of A is an
- *> initial column, otherwise it is a free column. Before
- *> the QR factorization of A, all initial columns are
- *> permuted to the leading positions; only the remaining
- *> free columns are moved as a result of column pivoting
- *> during the factorization.
- *> On exit, if JPVT(i) = k, then the i-th column of A*P
- *> was the k-th column of A.
- *> \endverbatim
- *>
- *> \param[in] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> RCOND is used to determine the effective rank of A, which
- *> is defined as the order of the largest leading triangular
- *> submatrix R11 in the QR factorization with pivoting of A,
- *> whose estimated condition number < 1/RCOND.
- *> \endverbatim
- *>
- *> \param[out] RANK
- *> \verbatim
- *> RANK is INTEGER
- *> The effective rank of A, i.e., the order of the submatrix
- *> R11. This is the same as the order of the submatrix T11
- *> in the complete orthogonal factorization of A.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension
- *> (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup realGEsolve
- *
- * =====================================================================
- SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
- $ WORK, INFO )
- *
- * -- LAPACK driver routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
- REAL RCOND
- * ..
- * .. Array Arguments ..
- INTEGER JPVT( * )
- REAL A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER IMAX, IMIN
- PARAMETER ( IMAX = 1, IMIN = 2 )
- REAL ZERO, ONE, DONE, NTDONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO,
- $ NTDONE = ONE )
- * ..
- * .. Local Scalars ..
- INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
- REAL ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
- $ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE
- EXTERNAL SLAMCH, SLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEQPF, SLABAD, SLAIC1, SLASCL, SLASET, SLATZM,
- $ SORM2R, STRSM, STZRQF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- MN = MIN( M, N )
- ISMIN = MN + 1
- ISMAX = 2*MN + 1
- *
- * Test the input arguments.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
- INFO = -7
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGELSX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MIN( M, N, NRHS ).EQ.0 ) THEN
- RANK = 0
- RETURN
- END IF
- *
- * Get machine parameters
- *
- SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * Scale A, B if max elements outside range [SMLNUM,BIGNUM]
- *
- ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
- *
- * Matrix all zero. Return zero solution.
- *
- CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- RANK = 0
- GO TO 100
- END IF
- *
- BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 2
- END IF
- *
- * Compute QR factorization with column pivoting of A:
- * A * P = Q * R
- *
- CALL SGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
- *
- * workspace 3*N. Details of Householder rotations stored
- * in WORK(1:MN).
- *
- * Determine RANK using incremental condition estimation
- *
- WORK( ISMIN ) = ONE
- WORK( ISMAX ) = ONE
- SMAX = ABS( A( 1, 1 ) )
- SMIN = SMAX
- IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
- RANK = 0
- CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- GO TO 100
- ELSE
- RANK = 1
- END IF
- *
- 10 CONTINUE
- IF( RANK.LT.MN ) THEN
- I = RANK + 1
- CALL SLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
- $ A( I, I ), SMINPR, S1, C1 )
- CALL SLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
- $ A( I, I ), SMAXPR, S2, C2 )
- *
- IF( SMAXPR*RCOND.LE.SMINPR ) THEN
- DO 20 I = 1, RANK
- WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
- WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
- 20 CONTINUE
- WORK( ISMIN+RANK ) = C1
- WORK( ISMAX+RANK ) = C2
- SMIN = SMINPR
- SMAX = SMAXPR
- RANK = RANK + 1
- GO TO 10
- END IF
- END IF
- *
- * Logically partition R = [ R11 R12 ]
- * [ 0 R22 ]
- * where R11 = R(1:RANK,1:RANK)
- *
- * [R11,R12] = [ T11, 0 ] * Y
- *
- IF( RANK.LT.N )
- $ CALL STZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
- *
- * Details of Householder rotations stored in WORK(MN+1:2*MN)
- *
- * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
- *
- CALL SORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
- $ B, LDB, WORK( 2*MN+1 ), INFO )
- *
- * workspace NRHS
- *
- * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
- *
- CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
- $ NRHS, ONE, A, LDA, B, LDB )
- *
- DO 40 I = RANK + 1, N
- DO 30 J = 1, NRHS
- B( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
- *
- IF( RANK.LT.N ) THEN
- DO 50 I = 1, RANK
- CALL SLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
- $ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
- $ WORK( 2*MN+1 ) )
- 50 CONTINUE
- END IF
- *
- * workspace NRHS
- *
- * B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
- *
- DO 90 J = 1, NRHS
- DO 60 I = 1, N
- WORK( 2*MN+I ) = NTDONE
- 60 CONTINUE
- DO 80 I = 1, N
- IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
- IF( JPVT( I ).NE.I ) THEN
- K = I
- T1 = B( K, J )
- T2 = B( JPVT( K ), J )
- 70 CONTINUE
- B( JPVT( K ), J ) = T1
- WORK( 2*MN+K ) = DONE
- T1 = T2
- K = JPVT( K )
- T2 = B( JPVT( K ), J )
- IF( JPVT( K ).NE.I )
- $ GO TO 70
- B( I, J ) = T1
- WORK( 2*MN+K ) = DONE
- END IF
- END IF
- 80 CONTINUE
- 90 CONTINUE
- *
- * Undo scaling
- *
- IF( IASCL.EQ.1 ) THEN
- CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
- CALL SLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
- CALL SLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
- END IF
- *
- 100 CONTINUE
- *
- RETURN
- *
- * End of SGELSX
- *
- END
|