|
- ! Copyright (c) 2013-2016, The OpenBLAS Project
- ! All rights reserved.
- ! Redistribution and use in source and binary forms, with or without
- ! modification, are permitted provided that the following conditions are
- ! met:
- ! 1. Redistributions of source code must retain the above copyright
- ! notice, this list of conditions and the following disclaimer.
- ! 2. Redistributions in binary form must reproduce the above copyright
- ! notice, this list of conditions and the following disclaimer in
- ! the documentation and/or other materials provided with the
- ! distribution.
- ! 3. Neither the name of the OpenBLAS project nor the names of
- ! its contributors may be used to endorse or promote products
- ! derived from this software without specific prior written permission.
- ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ! ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- ! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- ! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- *> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAQR5 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
- * SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
- * LDU, NV, WV, LDWV, NH, WH, LDWH )
- *
- * .. Scalar Arguments ..
- * INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- * $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
- * $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAQR5, called by DLAQR0, performs a
- *> single small-bulge multi-shift QR sweep.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is logical scalar
- *> WANTT = .true. if the quasi-triangular Schur factor
- *> is being computed. WANTT is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is logical scalar
- *> WANTZ = .true. if the orthogonal Schur factor is being
- *> computed. WANTZ is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] KACC22
- *> \verbatim
- *> KACC22 is integer with value 0, 1, or 2.
- *> Specifies the computation mode of far-from-diagonal
- *> orthogonal updates.
- *> = 0: DLAQR5 does not accumulate reflections and does not
- *> use matrix-matrix multiply to update far-from-diagonal
- *> matrix entries.
- *> = 1: DLAQR5 accumulates reflections and uses matrix-matrix
- *> multiply to update the far-from-diagonal matrix entries.
- *> = 2: DLAQR5 accumulates reflections, uses matrix-matrix
- *> multiply to update the far-from-diagonal matrix entries,
- *> and takes advantage of 2-by-2 block structure during
- *> matrix multiplies.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is integer scalar
- *> N is the order of the Hessenberg matrix H upon which this
- *> subroutine operates.
- *> \endverbatim
- *>
- *> \param[in] KTOP
- *> \verbatim
- *> KTOP is integer scalar
- *> \endverbatim
- *>
- *> \param[in] KBOT
- *> \verbatim
- *> KBOT is integer scalar
- *> These are the first and last rows and columns of an
- *> isolated diagonal block upon which the QR sweep is to be
- *> applied. It is assumed without a check that
- *> either KTOP = 1 or H(KTOP,KTOP-1) = 0
- *> and
- *> either KBOT = N or H(KBOT+1,KBOT) = 0.
- *> \endverbatim
- *>
- *> \param[in] NSHFTS
- *> \verbatim
- *> NSHFTS is integer scalar
- *> NSHFTS gives the number of simultaneous shifts. NSHFTS
- *> must be positive and even.
- *> \endverbatim
- *>
- *> \param[in,out] SR
- *> \verbatim
- *> SR is DOUBLE PRECISION array of size (NSHFTS)
- *> \endverbatim
- *>
- *> \param[in,out] SI
- *> \verbatim
- *> SI is DOUBLE PRECISION array of size (NSHFTS)
- *> SR contains the real parts and SI contains the imaginary
- *> parts of the NSHFTS shifts of origin that define the
- *> multi-shift QR sweep. On output SR and SI may be
- *> reordered.
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is DOUBLE PRECISION array of size (LDH,N)
- *> On input H contains a Hessenberg matrix. On output a
- *> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
- *> to the isolated diagonal block in rows and columns KTOP
- *> through KBOT.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is integer scalar
- *> LDH is the leading dimension of H just as declared in the
- *> calling procedure. LDH.GE.MAX(1,N).
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array of size (LDZ,IHI)
- *> If WANTZ = .TRUE., then the QR Sweep orthogonal
- *> similarity transformation is accumulated into
- *> Z(ILOZ:IHIZ,ILO:IHI) from the right.
- *> If WANTZ = .FALSE., then Z is unreferenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is integer scalar
- *> LDA is the leading dimension of Z just as declared in
- *> the calling procedure. LDZ.GE.N.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array of size (LDV,NSHFTS/2)
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is integer scalar
- *> LDV is the leading dimension of V as declared in the
- *> calling procedure. LDV.GE.3.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array of size
- *> (LDU,3*NSHFTS-3)
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is integer scalar
- *> LDU is the leading dimension of U just as declared in the
- *> in the calling subroutine. LDU.GE.3*NSHFTS-3.
- *> \endverbatim
- *>
- *> \param[in] NH
- *> \verbatim
- *> NH is integer scalar
- *> NH is the number of columns in array WH available for
- *> workspace. NH.GE.1.
- *> \endverbatim
- *>
- *> \param[out] WH
- *> \verbatim
- *> WH is DOUBLE PRECISION array of size (LDWH,NH)
- *> \endverbatim
- *>
- *> \param[in] LDWH
- *> \verbatim
- *> LDWH is integer scalar
- *> Leading dimension of WH just as declared in the
- *> calling procedure. LDWH.GE.3*NSHFTS-3.
- *> \endverbatim
- *>
- *> \param[in] NV
- *> \verbatim
- *> NV is integer scalar
- *> NV is the number of rows in WV agailable for workspace.
- *> NV.GE.1.
- *> \endverbatim
- *>
- *> \param[out] WV
- *> \verbatim
- *> WV is DOUBLE PRECISION array of size
- *> (LDWV,3*NSHFTS-3)
- *> \endverbatim
- *>
- *> \param[in] LDWV
- *> \verbatim
- *> LDWV is integer scalar
- *> LDWV is the leading dimension of WV as declared in the
- *> in the calling subroutine. LDWV.GE.NV.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date September 2012
- *
- *> \ingroup doubleOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *
- *> \par References:
- * ================
- *>
- *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
- *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
- *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
- *> 929--947, 2002.
- *>
- * =====================================================================
- SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
- $ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
- $ LDU, NV, WV, LDWV, NH, WH, LDWH )
- *
- * -- LAPACK auxiliary routine (version 3.4.2) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * September 2012
- *
- * .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
- $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
- $ Z( LDZ, * )
- * ..
- *
- * ================================================================
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM,
- $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
- $ ULP
- INTEGER I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
- $ JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
- $ M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
- $ NS, NU
- LOGICAL ACCUM, BLK22, BMP22
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. Intrinsic Functions ..
- *
- INTRINSIC ABS, DBLE, MAX, MIN, MOD
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION VT( 3 )
- * temp scalars
- DOUBLE PRECISION tempv1, tempv2, tempv3,
- $ tempv4, tempv5, tempv6,
- $ temph1, temph2, temph3,
- $ temph4, temph5, temph6,
- $ tempz1, tempz2, tempz3,
- $ tempz4, tempz5, tempz6,
- $ tempu1, tempu2, tempu3,
- $ tempu4, tempu5, tempu6,
- $ REFSU1
- INTEGER JBEGIN, M1
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
- $ DTRMM
- * ..
- * .. Executable Statements ..
- *
- * ==== If there are no shifts, then there is nothing to do. ====
- *
- IF( NSHFTS.LT.2 )
- $ RETURN
- *
- * ==== If the active block is empty or 1-by-1, then there
- * . is nothing to do. ====
- *
- IF( KTOP.GE.KBOT )
- $ RETURN
- *
- * ==== Shuffle shifts into pairs of real shifts and pairs
- * . of complex conjugate shifts assuming complex
- * . conjugate shifts are already adjacent to one
- * . another. ====
- *
- DO 10 I = 1, NSHFTS - 2, 2
- IF( SI( I ).NE.-SI( I+1 ) ) THEN
- *
- SWAP = SR( I )
- SR( I ) = SR( I+1 )
- SR( I+1 ) = SR( I+2 )
- SR( I+2 ) = SWAP
- *
- SWAP = SI( I )
- SI( I ) = SI( I+1 )
- SI( I+1 ) = SI( I+2 )
- SI( I+2 ) = SWAP
- END IF
- 10 CONTINUE
- *
- * ==== NSHFTS is supposed to be even, but if it is odd,
- * . then simply reduce it by one. The shuffle above
- * . ensures that the dropped shift is real and that
- * . the remaining shifts are paired. ====
- *
- NS = NSHFTS - MOD( NSHFTS, 2 )
- *
- * ==== Machine constants for deflation ====
- *
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULP = DLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( DBLE( N ) / ULP )
- *
- * ==== Use accumulated reflections to update far-from-diagonal
- * . entries ? ====
- *
- ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
- *
- * ==== If so, exploit the 2-by-2 block structure? ====
- *
- BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
- *
- * ==== clear trash ====
- *
- IF( KTOP+2.LE.KBOT )
- $ H( KTOP+2, KTOP ) = ZERO
- *
- * ==== NBMPS = number of 2-shift bulges in the chain ====
- *
- NBMPS = NS / 2
- *
- * ==== KDU = width of slab ====
- *
- KDU = 6*NBMPS - 3
- *
- * ==== Create and chase chains of NBMPS bulges ====
- *
- DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
- NDCOL = INCOL + KDU
- IF( ACCUM )
- $ CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
- *
- * ==== Near-the-diagonal bulge chase. The following loop
- * . performs the near-the-diagonal part of a small bulge
- * . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal
- * . chunk extends from column INCOL to column NDCOL
- * . (including both column INCOL and column NDCOL). The
- * . following loop chases a 3*NBMPS column long chain of
- * . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL
- * . may be less than KTOP and and NDCOL may be greater than
- * . KBOT indicating phantom columns from which to chase
- * . bulges before they are actually introduced or to which
- * . to chase bulges beyond column KBOT.) ====
- *
- DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
- *
- * ==== Bulges number MTOP to MBOT are active double implicit
- * . shift bulges. There may or may not also be small
- * . 2-by-2 bulge, if there is room. The inactive bulges
- * . (if any) must wait until the active bulges have moved
- * . down the diagonal to make room. The phantom matrix
- * . paradigm described above helps keep track. ====
- *
- MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
- MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
- M22 = MBOT + 1
- BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
- $ ( KBOT-2 )
- *
- * ==== Generate reflections to chase the chain right
- * . one column. (The minimum value of K is KTOP-1.) ====
- *
- DO 20 M = MTOP, MBOT
- K = KRCOL + 3*( M-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ V( 1, M ) )
- ALPHA = V( 1, M )
- CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M ) = H( K+2, K )
- V( 3, M ) = H( K+3, K )
- CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
- *
- * ==== A Bulge may collapse because of vigilant
- * . deflation or destructive underflow. In the
- * . underflow case, try the two-small-subdiagonals
- * . trick to try to reinflate the bulge. ====
- *
- IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
- $ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
- *
- * ==== Typical case: not collapsed (yet). ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Atypical case: collapsed. Attempt to
- * . reintroduce ignoring H(K+1,K) and H(K+2,K).
- * . If the fill resulting from the new
- * . reflector is too large, then abandon it.
- * . Otherwise, use the new one. ====
- *
- CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ VT )
- ALPHA = VT( 1 )
- CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
- REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
- $ H( K+2, K ) )
- *
- IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
- $ ABS( REFSUM*VT( 3 ) ).GT.ULP*
- $ ( ABS( H( K, K ) )+ABS( H( K+1,
- $ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
- *
- * ==== Starting a new bulge here would
- * . create non-negligible fill. Use
- * . the old one with trepidation. ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Stating a new bulge here would
- * . create only negligible fill.
- * . Replace the old reflector with
- * . the new one. ====
- *
- H( K+1, K ) = H( K+1, K ) - REFSUM
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- V( 1, M ) = VT( 1 )
- V( 2, M ) = VT( 2 )
- V( 3, M ) = VT( 3 )
- END IF
- END IF
- END IF
- 20 CONTINUE
- *
- * ==== Generate a 2-by-2 reflection, if needed. ====
- *
- K = KRCOL + 3*( M22-1 )
- IF( BMP22 ) THEN
- IF( K.EQ.KTOP-1 ) THEN
- CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
- $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
- $ V( 1, M22 ) )
- BETA = V( 1, M22 )
- CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M22 ) = H( K+2, K )
- CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- END IF
- END IF
- *
- * ==== Multiply H by reflections from the left ====
- *
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- DO 40 J = MAX( KTOP, KRCOL ), JBOT
- MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
-
- DO 30 M = MTOP, MEND
-
- M1 = M -1
-
- tempv1 = V( 1, M )
- K = KRCOL + 2*M1
- tempv2 = V( 2, M )
- K = K + M1
- tempv3 = V( 3, M )
- temph1 = H( K+1, J )
- temph2 = H( K+2, J )
- temph3 = H( K+3, J )
-
- REFSUM = tempv1*( temph1+tempv2*
- $ temph2+tempv3*temph3 )
-
-
- H( K+1, J ) = temph1 - REFSUM
- H( K+2, J ) = temph2 - REFSUM*tempv2
- H( K+3, J ) = temph3 - REFSUM*tempv3
-
- 30 CONTINUE
-
- 40 CONTINUE
- IF( BMP22 ) THEN
- K = KRCOL + 3*( M22-1 )
- DO 50 J = MAX( K+1, KTOP ), JBOT
- REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
- $ H( K+2, J ) )
- H( K+1, J ) = H( K+1, J ) - REFSUM
- H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
- 50 CONTINUE
- END IF
- *
- * ==== Multiply H by reflections from the right.
- * . Delay filling in the last row until the
- * . vigilant deflation check is complete. ====
- *
- IF( ACCUM ) THEN
- JTOP = MAX( KTOP, INCOL )
- ELSE IF( WANTT ) THEN
- JTOP = 1
- ELSE
- JTOP = KTOP
- END IF
- DO 90 M = MTOP, MBOT
- IF( V( 1, M ).NE.ZERO ) THEN
- tempv1 = V( 1, M )
- tempv2 = V( 2, M )
- tempv3 = V( 3, M )
- K = KRCOL + 3*( M-1 )
- JBEGIN = JTOP
-
- IF ( MOD( MIN( KBOT, K+3 )-JTOP+1, 2).GT.0 ) THEN
- J = JBEGIN
-
- temph1 = H( J, K+1 )
- temph2 = H( J, K+2 )
- temph3 = H( J, K+3 )
- REFSUM = tempv1* ( temph1+tempv2*temph2+
- $ tempv3*temph3 )
- H( J, K+1 ) = temph1 - REFSUM
- H( J, K+2 ) = temph2 - REFSUM*tempv2
- H( J, K+3 ) = temph3 - REFSUM*tempv3
-
- JBEGIN = JBEGIN + 1
-
- END IF
-
-
- DO 60 J = JBEGIN, MIN( KBOT, K+3 ), 2
-
- temph1 = H( J, K+1 )
- temph4 = H( J+1, K+1 )
- temph2 = H( J, K+2 )
- temph5 = H( J+1, K+2 )
- temph3 = H( J, K+3 )
- temph6 = H( J+1, K+3 )
-
- REFSUM = tempv1* ( temph1+tempv2*temph2+
- $ tempv3*temph3 )
-
- REFSU1 = tempv1* ( temph4+tempv2*temph5+
- $ tempv3*temph6 )
-
- H( J, K+1 ) = temph1 - REFSUM
- H( J+1, K+1 ) = temph4 - REFSU1
- H( J, K+2 ) = temph2 - REFSUM*tempv2
- H( J+1, K+2 ) = temph5 - REFSU1*tempv2
- H( J, K+3 ) = temph3 - REFSUM*tempv3
- H( J+1, K+3 ) = temph6 - REFSU1*tempv3
-
- 60 CONTINUE
- *
- IF( ACCUM ) THEN
- *
- * ==== Accumulate U. (If necessary, update Z later
- * . with with an efficient matrix-matrix
- * . multiply.) ====
- *
- KMS = K - INCOL
- JBEGIN=MAX( 1, KTOP-INCOL )
-
- IF ( MOD(KDU-JBEGIN+1,2).GT.0 ) THEN
- J = JBEGIN
- tempu1 = U( J, KMS+1 )
- tempu2 = U( J, KMS+2 )
- tempu3 = U( J, KMS+3 )
- REFSUM = tempv1* ( tempu1+tempv2*tempu2+
- $ tempv3*tempu3 )
- U( J, KMS+1 ) = tempu1 - REFSUM
- U( J, KMS+2 ) = tempu2 - REFSUM*tempv2
- U( J, KMS+3 ) = tempu3 - REFSUM*tempv3
- JBEGIN = JBEGIN + 1
-
- END IF
-
-
- DO 70 J = JBEGIN, KDU , 2
-
- tempu1 = U( J, KMS+1 )
- tempu4 = U( J+1, KMS+1 )
- tempu2 = U( J, KMS+2 )
- tempu5 = U( J+1, KMS+2 )
- tempu3 = U( J, KMS+3 )
- tempu6 = U( J+1, KMS+3 )
- REFSUM = tempv1* ( tempu1+tempv2*tempu2+
- $ tempv3*tempu3 )
-
- REFSU1 = tempv1* ( tempu4+tempv2*tempu5+
- $ tempv3*tempu6 )
-
- U( J, KMS+1 ) = tempu1 - REFSUM
- U( J+1, KMS+1 ) = tempu4 - REFSU1
- U( J, KMS+2 ) = tempu2 - REFSUM*tempv2
- U( J+1, KMS+2 ) = tempu5 - REFSU1*tempv2
- U( J, KMS+3 ) = tempu3 - REFSUM*tempv3
- U( J+1, KMS+3 ) = tempu6 - REFSU1*tempv3
-
- 70 CONTINUE
-
-
- ELSE IF( WANTZ ) THEN
- *
- * ==== U is not accumulated, so update Z
- * . now by multiplying by reflections
- * . from the right. ====
- *
- JBEGIN = ILOZ
-
- IF ( MOD(IHIZ-ILOZ+1,2).GT.0 ) THEN
- J = JBEGIN
-
- tempz1 = Z( J, K+1 )
- tempz2 = Z( J, K+2 )
- tempz3 = Z( J, K+3 )
- REFSUM = tempv1* ( tempz1+tempv2*tempz2+
- $ tempv3*tempz3 )
- Z( J, K+1 ) = tempz1 - REFSUM
- Z( J, K+2 ) = tempz2 - REFSUM*tempv2
- Z( J, K+3 ) = tempz3 - REFSUM*tempv3
-
- JBEGIN = JBEGIN + 1
-
- END IF
-
- DO 80 J = JBEGIN, IHIZ, 2
-
- tempz1 = Z( J, K+1 )
- tempz4 = Z( J+1, K+1 )
- tempz2 = Z( J, K+2 )
- tempz5 = Z( J+1, K+2 )
- tempz3 = Z( J, K+3 )
- tempz6 = Z( J+1, K+3 )
-
- REFSUM = tempv1* ( tempz1+tempv2*tempz2+
- $ tempv3*tempz3 )
-
- REFSU1 = tempv1* ( tempz4+tempv2*tempz5+
- $ tempv3*tempz6 )
-
- Z( J, K+1 ) = tempz1 - REFSUM
- Z( J, K+2 ) = tempz2 - REFSUM*tempv2
- Z( J, K+3 ) = tempz3 - REFSUM*tempv3
-
-
- Z( J+1, K+1 ) = tempz4 - REFSU1
- Z( J+1, K+2 ) = tempz5 - REFSU1*tempv2
- Z( J+1, K+3 ) = tempz6 - REFSU1*tempv3
-
-
- 80 CONTINUE
-
- END IF
- END IF
- 90 CONTINUE
- *
- * ==== Special case: 2-by-2 reflection (if needed) ====
- *
- K = KRCOL + 3*( M22-1 )
- IF( BMP22 ) THEN
- IF ( V( 1, M22 ).NE.ZERO ) THEN
- DO 100 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
- $ H( J, K+2 ) )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM
- H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
- 100 CONTINUE
- *
- IF( ACCUM ) THEN
- KMS = K - INCOL
- DO 110 J = MAX( 1, KTOP-INCOL ), KDU
- REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
- $ V( 2, M22 )*U( J, KMS+2 ) )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
- U( J, KMS+2 ) = U( J, KMS+2 ) -
- $ REFSUM*V( 2, M22 )
- 110 CONTINUE
- ELSE IF( WANTZ ) THEN
- DO 120 J = ILOZ, IHIZ
- REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
- $ Z( J, K+2 ) )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
- Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
- 120 CONTINUE
- END IF
- END IF
- END IF
- *
- * ==== Vigilant deflation check ====
- *
- MSTART = MTOP
- IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
- $ MSTART = MSTART + 1
- MEND = MBOT
- IF( BMP22 )
- $ MEND = MEND + 1
- IF( KRCOL.EQ.KBOT-2 )
- $ MEND = MEND + 1
- DO 130 M = MSTART, MEND
- K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
- *
- * ==== The following convergence test requires that
- * . the tradition small-compared-to-nearby-diagonals
- * . criterion and the Ahues & Tisseur (LAWN 122, 1997)
- * . criteria both be satisfied. The latter improves
- * . accuracy in some examples. Falling back on an
- * . alternate convergence criterion when TST1 or TST2
- * . is zero (as done here) is traditional but probably
- * . unnecessary. ====
- *
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
- IF( TST1.EQ.ZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + ABS( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + ABS( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + ABS( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + ABS( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + ABS( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + ABS( H( K+4, K+1 ) )
- END IF
- IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
- $ THEN
- H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H11 = MAX( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
- *
- IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
- END IF
- END IF
- 130 CONTINUE
- *
- * ==== Fill in the last row of each bulge. ====
- *
- MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
- DO 140 M = MTOP, MEND
- K = KRCOL + 3*( M-1 )
- REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
- H( K+4, K+1 ) = -REFSUM
- H( K+4, K+2 ) = -REFSUM*V( 2, M )
- H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
- 140 CONTINUE
- *
- * ==== End of near-the-diagonal bulge chase. ====
- *
- 150 CONTINUE
- *
- * ==== Use U (if accumulated) to update far-from-diagonal
- * . entries in H. If required, use U to update Z as
- * . well. ====
- *
- IF( ACCUM ) THEN
- IF( WANTT ) THEN
- JTOP = 1
- JBOT = N
- ELSE
- JTOP = KTOP
- JBOT = KBOT
- END IF
- IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
- $ ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
- *
- * ==== Updates not exploiting the 2-by-2 block
- * . structure of U. K1 and NU keep track of
- * . the location and size of U in the special
- * . cases of introducing bulges and chasing
- * . bulges off the bottom. In these special
- * . cases and in case the number of shifts
- * . is NS = 2, there is no 2-by-2 block
- * . structure to exploit. ====
- *
- K1 = MAX( 1, KTOP-INCOL )
- NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
- *
- * ==== Horizontal Multiply ====
- *
- DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
- CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
- $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
- $ LDWH )
- CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
- $ H( INCOL+K1, JCOL ), LDH )
- 160 CONTINUE
- *
- * ==== Vertical multiply ====
- *
- DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
- JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
- CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ H( JROW, INCOL+K1 ), LDH )
- 170 CONTINUE
- *
- * ==== Z multiply (also vertical) ====
- *
- IF( WANTZ ) THEN
- DO 180 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
- CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ Z( JROW, INCOL+K1 ), LDZ )
- 180 CONTINUE
- END IF
- ELSE
- *
- * ==== Updates exploiting U's 2-by-2 block structure.
- * . (I2, I4, J2, J4 are the last rows and columns
- * . of the blocks.) ====
- *
- I2 = ( KDU+1 ) / 2
- I4 = KDU
- J2 = I4 - I2
- J4 = KDU
- *
- * ==== KZS and KNZ deal with the band of zeros
- * . along the diagonal of one of the triangular
- * . blocks. ====
- *
- KZS = ( J4-J2 ) - ( NS+1 )
- KNZ = NS + 1
- *
- * ==== Horizontal multiply ====
- *
- DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
- *
- * ==== Copy bottom of H to top+KZS of scratch ====
- * (The first KZS rows get multiplied by zero.) ====
- *
- CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
- $ LDH, WH( KZS+1, 1 ), LDWH )
- *
- * ==== Multiply by U21**T ====
- *
- CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
- CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
- $ U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
- $ LDWH )
- *
- * ==== Multiply top of H by U11**T ====
- *
- CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
- $ H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
- *
- * ==== Copy top of H to bottom of WH ====
- *
- CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
- $ WH( I2+1, 1 ), LDWH )
- *
- * ==== Multiply by U21**T ====
- *
- CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
- $ U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
- *
- * ==== Multiply by U22 ====
- *
- CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
- $ U( J2+1, I2+1 ), LDU,
- $ H( INCOL+1+J2, JCOL ), LDH, ONE,
- $ WH( I2+1, 1 ), LDWH )
- *
- * ==== Copy it back ====
- *
- CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
- $ H( INCOL+1, JCOL ), LDH )
- 190 CONTINUE
- *
- * ==== Vertical multiply ====
- *
- DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
- JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
- *
- * ==== Copy right of H to scratch (the first KZS
- * . columns get multiplied by zero) ====
- *
- CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
- $ LDH, WV( 1, 1+KZS ), LDWV )
- *
- * ==== Multiply by U21 ====
- *
- CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
- CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
- $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
- $ LDWV )
- *
- * ==== Multiply by U11 ====
- *
- CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
- $ H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
- $ LDWV )
- *
- * ==== Copy left of H to right of scratch ====
- *
- CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
- $ WV( 1, 1+I2 ), LDWV )
- *
- * ==== Multiply by U21 ====
- *
- CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
- $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
- *
- * ==== Multiply by U22 ====
- *
- CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
- $ H( JROW, INCOL+1+J2 ), LDH,
- $ U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
- $ LDWV )
- *
- * ==== Copy it back ====
- *
- CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
- $ H( JROW, INCOL+1 ), LDH )
- 200 CONTINUE
- *
- * ==== Multiply Z (also vertical) ====
- *
- IF( WANTZ ) THEN
- DO 210 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
- *
- * ==== Copy right of Z to left of scratch (first
- * . KZS columns get multiplied by zero) ====
- *
- CALL DLACPY( 'ALL', JLEN, KNZ,
- $ Z( JROW, INCOL+1+J2 ), LDZ,
- $ WV( 1, 1+KZS ), LDWV )
- *
- * ==== Multiply by U12 ====
- *
- CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
- $ LDWV )
- CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
- $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
- $ LDWV )
- *
- * ==== Multiply by U11 ====
- *
- CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
- $ Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
- $ WV, LDWV )
- *
- * ==== Copy left of Z to right of scratch ====
- *
- CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
- $ LDZ, WV( 1, 1+I2 ), LDWV )
- *
- * ==== Multiply by U21 ====
- *
- CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
- $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
- $ LDWV )
- *
- * ==== Multiply by U22 ====
- *
- CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
- $ Z( JROW, INCOL+1+J2 ), LDZ,
- $ U( J2+1, I2+1 ), LDU, ONE,
- $ WV( 1, 1+I2 ), LDWV )
- *
- * ==== Copy the result back to Z ====
- *
- CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
- $ Z( JROW, INCOL+1 ), LDZ )
- 210 CONTINUE
- END IF
- END IF
- END IF
- 220 CONTINUE
- *
- * ==== End of DLAQR5 ====
- *
- END
|