|
- *> \brief \b ZERRSY
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZERRSY( PATH, NUNIT )
- *
- * .. Scalar Arguments ..
- * CHARACTER*3 PATH
- * INTEGER NUNIT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZERRSY tests the error exits for the COMPLEX*16 routines
- *> for symmetric indefinite matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] PATH
- *> \verbatim
- *> PATH is CHARACTER*3
- *> The LAPACK path name for the routines to be tested.
- *> \endverbatim
- *>
- *> \param[in] NUNIT
- *> \verbatim
- *> NUNIT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZERRSY( PATH, NUNIT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER*3 PATH
- INTEGER NUNIT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NMAX
- PARAMETER ( NMAX = 4 )
- * ..
- * .. Local Scalars ..
- CHARACTER*2 C2
- INTEGER I, INFO, J
- DOUBLE PRECISION ANRM, RCOND
- * ..
- * .. Local Arrays ..
- INTEGER IP( NMAX )
- DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
- COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
- $ E( NMAX ), W( 2*NMAX ), X( NMAX )
- * ..
- * .. External Functions ..
- LOGICAL LSAMEN
- EXTERNAL LSAMEN
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, ZSPCON, ZSPRFS, ZSPTRF, ZSPTRI,
- $ ZSPTRS, ZSYCON, ZSYCON_3, ZSYCON_ROOK, ZSYRFS,
- $ ZSYTF2, ZSYTF2_RK, ZSYTF2_ROOK, ZSYTRF,
- $ ZSYTRF_RK, ZSYTRF_ROOK, ZSYTRI, ZSYTRI_3,
- $ ZSYTRI_3X, ZSYTRI_ROOK, ZSYTRI2, ZSYTRI2X,
- $ ZSYTRS, ZSYTRS_3, ZSYTRS_ROOK
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NOUT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NOUT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX
- * ..
- * .. Executable Statements ..
- *
- NOUT = NUNIT
- WRITE( NOUT, FMT = * )
- C2 = PATH( 2: 3 )
- *
- * Set the variables to innocuous values.
- *
- DO 20 J = 1, NMAX
- DO 10 I = 1, NMAX
- A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
- $ -1.D0 / DBLE( I+J ) )
- AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
- $ -1.D0 / DBLE( I+J ) )
- 10 CONTINUE
- B( J ) = 0.D0
- E( J ) = 0.D0
- R1( J ) = 0.D0
- R2( J ) = 0.D0
- W( J ) = 0.D0
- X( J ) = 0.D0
- IP( J ) = J
- 20 CONTINUE
- ANRM = 1.0D0
- OK = .TRUE.
- *
- IF( LSAMEN( 2, C2, 'SY' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite matrix with partial
- * (Bunch-Kaufman) diagonal pivoting method.
- *
- * ZSYTRF
- *
- SRNAMT = 'ZSYTRF'
- INFOT = 1
- CALL ZSYTRF( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRF( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRF( 'U', 2, A, 1, IP, W, 4, INFO )
- CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF( 'U', 0, A, 1, IP, W, 0, INFO )
- CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF( 'U', 0, A, 1, IP, W, -2, INFO )
- CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
- *
- * ZSYTF2
- *
- SRNAMT = 'ZSYTF2'
- INFOT = 1
- CALL ZSYTF2( '/', 0, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTF2( 'U', -1, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTF2( 'U', 2, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI
- *
- SRNAMT = 'ZSYTRI'
- INFOT = 1
- CALL ZSYTRI( '/', 0, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI( 'U', -1, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI( 'U', 2, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI2
- *
- SRNAMT = 'ZSYTRI2'
- INFOT = 1
- CALL ZSYTRI2( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI2X
- *
- SRNAMT = 'ZSYTRI2X'
- INFOT = 1
- CALL ZSYTRI2X( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRS
- *
- SRNAMT = 'ZSYTRS'
- INFOT = 1
- CALL ZSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
- CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
- *
- * ZSYRFS
- *
- SRNAMT = 'ZSYRFS'
- INFOT = 1
- CALL ZSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
- $ W, R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
- $ W, R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- INFOT = 12
- CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
- $ R, INFO )
- CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
- *
- * ZSYCON
- *
- SRNAMT = 'ZSYCON'
- INFOT = 1
- CALL ZSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL ZSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite matrix with rook
- * (bounded Bunch-Kaufman) diagonal pivoting method.
- *
- * ZSYTRF_ROOK
- *
- SRNAMT = 'ZSYTRF_ROOK'
- INFOT = 1
- CALL ZSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
- CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
- CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
- CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZSYTF2_ROOK
- *
- SRNAMT = 'ZSYTF2_ROOK'
- INFOT = 1
- CALL ZSYTF2_ROOK( '/', 0, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTF2_ROOK( 'U', -1, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTF2_ROOK( 'U', 2, A, 1, IP, INFO )
- CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI_ROOK
- *
- SRNAMT = 'ZSYTRI_ROOK'
- INFOT = 1
- CALL ZSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
- CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRS_ROOK
- *
- SRNAMT = 'ZSYTRS_ROOK'
- INFOT = 1
- CALL ZSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
- CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
- *
- * ZSYCON_ROOK
- *
- SRNAMT = 'ZSYCON_ROOK'
- INFOT = 1
- CALL ZSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL ZSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite matrix with rook
- * (bounded Bunch-Kaufman) pivoting with the new storage
- * format for factors L ( or U) and D.
- *
- * L (or U) is stored in A, diagonal of D is stored on the
- * diagonal of A, subdiagonal of D is stored in a separate array E.
- *
- * ZSYTRF_RK
- *
- SRNAMT = 'ZSYTRF_RK'
- INFOT = 1
- CALL ZSYTRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
- CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
- CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
- CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
- *
- * ZSYTF2_RK
- *
- SRNAMT = 'ZSYTF2_RK'
- INFOT = 1
- CALL ZSYTF2_RK( '/', 0, A, 1, E, IP, INFO )
- CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTF2_RK( 'U', -1, A, 1, E, IP, INFO )
- CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTF2_RK( 'U', 2, A, 1, E, IP, INFO )
- CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI_3
- *
- SRNAMT = 'ZSYTRI_3'
- INFOT = 1
- CALL ZSYTRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
- CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
- CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRI_3X
- *
- SRNAMT = 'ZSYTRI_3X'
- INFOT = 1
- CALL ZSYTRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRS_3
- *
- SRNAMT = 'ZSYTRS_3'
- INFOT = 1
- CALL ZSYTRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYTRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYTRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
- CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
- INFOT = 9
- CALL ZSYTRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
- *
- * ZSYCON_3
- *
- SRNAMT = 'ZSYCON_3'
- INFOT = 1
- CALL ZSYCON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYCON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYCON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYCON_3( 'U', 1, A, 1, E, IP, -1.0D0, RCOND, W, INFO)
- CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite packed matrix with partial
- * (Bunch-Kaufman) pivoting.
- *
- * ZSPTRF
- *
- SRNAMT = 'ZSPTRF'
- INFOT = 1
- CALL ZSPTRF( '/', 0, A, IP, INFO )
- CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSPTRF( 'U', -1, A, IP, INFO )
- CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
- *
- * ZSPTRI
- *
- SRNAMT = 'ZSPTRI'
- INFOT = 1
- CALL ZSPTRI( '/', 0, A, IP, W, INFO )
- CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSPTRI( 'U', -1, A, IP, W, INFO )
- CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
- *
- * ZSPTRS
- *
- SRNAMT = 'ZSPTRS'
- INFOT = 1
- CALL ZSPTRS( '/', 0, 0, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
- CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
- *
- * ZSPRFS
- *
- SRNAMT = 'ZSPRFS'
- INFOT = 1
- CALL ZSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
- $ INFO )
- CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
- *
- * ZSPCON
- *
- SRNAMT = 'ZSPCON'
- INFOT = 1
- CALL ZSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
- CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite matrix with Aasen's algorithm.
- *
- * ZSYTRF_AA
- *
- SRNAMT = 'ZSYTRF_AA'
- INFOT = 1
- CALL ZSYTRF_AA( '/', 0, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRF_AA( 'U', -1, A, 1, IP, W, 1, INFO )
- CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRF_AA( 'U', 2, A, 1, IP, W, 4, INFO )
- CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF_AA( 'U', 0, A, 1, IP, W, 0, INFO )
- CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRF_AA( 'U', 0, A, 1, IP, W, -2, INFO )
- CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
- *
- * ZSYTRS_AA
- *
- SRNAMT = 'ZSYTRS_AA'
- INFOT = 1
- CALL ZSYTRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYTRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYTRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL ZSYTRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'S2' ) ) THEN
- *
- * Test error exits of the routines that use factorization
- * of a symmetric indefinite matrix with Aasen's algorithm.
- *
- * ZSYTRF_AA_2STAGE
- *
- SRNAMT = 'ZSYTRF_AA_2STAGE'
- INFOT = 1
- CALL ZSYTRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1,
- $ INFO )
- CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1,
- $ INFO )
- CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1,
- $ INFO )
- CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1,
- $ INFO )
- CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0,
- $ INFO )
- CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
- *
- * CHETRS_AA_2STAGE
- *
- SRNAMT = 'ZSYTRS_AA_2STAGE'
- INFOT = 1
- CALL ZSYTRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL ZSYTRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL ZSYTRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 5
- CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 7
- CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
- INFOT = 11
- CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP,
- $ B, 1, INFO )
- CALL CHKXER( 'ZSYTRS_AA_STAGE', INFOT, NOUT, LERR, OK )
- *
- END IF
- *
- * Print a summary line.
- *
- CALL ALAESM( PATH, OK, NOUT )
- *
- RETURN
- *
- * End of ZERRSY
- *
- END
|